长江流域资源与环境 >> 2019, Vol. 28 >> Issue (09): 2219-2229.doi: 10.11870/cjlyzyyhj201909020

• 生态环境 • 上一篇    下一篇

长江下游铁板洲洲头冲淤变化规律

刘晶1,2,李志威1,3,4*,许清文1,王晓娟5   

  1. (1.长沙理工大学水利工程学院,湖南 长沙 410004;2.中山大学海洋科学学院,广东 广州 510275;
    3.港口航道泥沙工程交通行业重点实验室,江苏 南京 210029; 4.水沙科学与水灾害防治
    湖南省重点实验室, 湖南 长沙 410114; 5.南京市滁河河道管理处, 江苏 南京 210048)
  • 出版日期:2019-09-20 发布日期:2019-09-17

Erosion-deposition Processes of the Bar Head in Tiebanzhou Island in the Lower Yangtze River 

LIU Jing1,2, LI Zhi-wei1,3,4, XU Qing-wen1, WANG Xiao-juan   

  1. (1. School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; 
    2. School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; 
    3. Key Laboratory of Port, Waterway & Sedimentation Engineering, Ministry of Communications, Nanjing 210029, China; 
    4. Key Laboratory of Water-Sediment Sciences and Water Disaster prevention of Hunan Province, Changsha 410114, China; 
    5. Department of Channel Management of Chuhe River, Nanjing 210048, China)

  • Online:2019-09-20 Published:2019-09-17

摘要: 长江下游是典型的分汊型河道,其江心洲的洲头正面临清水冲刷蚀退的严峻形势,如大通河段的铁板洲。基于大通水文站年均水沙数据(1956~2014年),选取铁板洲的遥感影像(1998~2016年)和实测地形数据(2004~2011年),并采用MIKE21 FM模拟铁板洲河段的水动力变化,分析近20年大通站年际及年内水沙变化、铁板洲的形态变化、洲头冲淤变化及主控因素。2003年后长江下游年均径流量变化较小,年均输沙量比2003年之前锐减67.4%。铁板洲受到低含沙水流的冲刷,洲头显著蚀退,其体积从163.57万m3(2004年)萎缩至68.84万m3(2011年),且年均蚀退率由8.88%(2004~2008年)增至11.57%(2008~2011年)。水动力模拟表明来流量增大对洲头的冲刷作用更加剧烈,即铁板洲在洪水期受到的冲刷大于枯水期。由于洲头的逆坡和阻挡作用,铁板洲洲头上游沿程流速不断减小并在洲头前缘岸边急剧降至零,最大流速出现在洲头左侧,使得其左侧成为主要蚀退区。

Abstract: The Lower Yangtze River is the typical anabranching channel, where the head of mid-channel bars are facing the seriously scouring situation under the impact of the sediment-starved flow, e.g., Tiebanzhou Island in the Datong reach. Water-sediment temporal change, area of Tiebanzhou Island, sediment deposition of bar head, and hydrodynamic characteristics (MIKE 21 model) were analyzed using the hydrological data of the Datong station (1956-2014), remote sensing imagery (1998-2016), channel topography (2004-2011). From 2003 to 2014, the mean annual runoff in the Datong station did not change much, but the mean annual sediment load decreased by 67.4%. The Tiebanzhou Island was eroded by the sediment-starved flow in the long-term, i.e., the volume of the bar head eroded from 1,635,700 m3 in 2004 to 688,400 m3 in 2011, and the average erosion rate from 8.88% in 2004-2008 increased to 11.57% in 2008-2011. The hydrodynamic simulation demonstrated that the greater incoming discharge, the strong scouring effect on the bar head, i.e., the erosion in flood seasons stronger than that in non-flood seasons. Owing to the backward slope and blocking effect on the upstream of bar head, the flow velocity decreases along the upper segment of the bar head, and sharply drops to zero when the flow is approaching the front of the bar head. The maximum velocity appears on the left side of the bar head that leads to the left side as the main erosion area.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 傅春, 欧阳莹, 陈炜. 环鄱阳湖区水足迹的动态变化评价[J]. 长江流域资源与环境, 2011, 20(12): 1520 .
[2] 吕立刚, 周生路, 周兵兵, 陈龙, 苏全龙, 王静. 1985年以来江苏省土地利用变化对人类活动程度的响应[J]. 长江流域资源与环境, 2015, 24(07): 1086 -1093 .
[3] 卢炜丽, 张洪江, 陈奇伯, 吴霖, 栗宏林. 重庆四面山杉木林优势种群径级结构与空间分布格局[J]. 长江流域资源与环境, 2016, 25(05): 777 -785 .
[4] 李向富, 刘目兴, 易军, 吴四平, 杨叶, 娄淑兰, . 峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(08): 1809 .
[5] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[6] 何松蔚, 王成刚, 姜海梅, 曹乐, 王新伟. 2015年冬季苏州城市热岛特征研究[J]. 长江流域资源与环境, 2018, 27(09): 2078 .
[7] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, 0, (): 0 .
[8] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609 -2618 .
[9] 孙殿臣, 王慧敏, 黄 晶, 刘高峰, . 鄱阳湖流域城市洪涝灾害风险及土地类型调整策略研究 ——以景德镇市为例[J]. 长江流域资源与环境, 2018, 27(12): 2856 -2866 .
[10] 李雪松, 龙湘雪, 齐晓旭. 长江经济带城市经济-社会-环境耦合协调发展的动态演化与分析[J]. 长江流域资源与环境, 2019, 28(03): 505 -516 .