长江流域资源与环境 >> 2019, Vol. 28 >> Issue (12): 2921-2935.doi: 10.11870/cjlyzyyhj201912013

• 农业发展 • 上一篇    下一篇

绿色技术进步、农业经济增长与污染空间溢出——来自中国农业水资源利用的证据

闫桂权1,2,何玉成1,2*,张晓恒1,2   

  1. (1.华中农业大学经济管理学院,湖北 武汉 430070;
    2. 华中农业大学湖北农村发展研究中心,湖北 武汉 430070)

  • 出版日期:2019-12-20 发布日期:2019-12-10

Green Technology Progress, Agricultural Economic Growth and Pollution Space Spillover Effect:Evidence of Agricultural Water Utilization Process in China

YAN Gui-quan1,2, HE Yu-cheng1,2, ZHANG Xiao-heng1,2   

  1. (1. College of Economics & Management, Huazhong Agricultural University, Wuhan 430070, China;
    2. Hubei Rural Development Research Center, Huazhong Agricultural University, Wuhan 430070, China)
  • Online:2019-12-20 Published:2019-12-10

摘要: 基于2002~2016年的省级面板数据,以农业水资源利用过程中的化肥源面源污染、厩肥源面源污染、灌溉过程碳排放及农药流失作为非合意产出,构建了以“蓝水-绿水”为中心的水资源分析框架,借助SBM模型和Malmquist-Luenberger指数,探析我国农业水资源利用过程的绿色技术进步情况,利用空间面板模型重点考察绿色技术进步、农业经济发展水平与农业水资源利用过程的污染排放之间的关系。化肥源面源污染排放量和农药流失量均表现出空间聚集的特性;在其他投入和产出不变的的既定条件下,促进农业水资源利用过程中的绿色技术进步能够缓解农业污染的局面;将农药流失污染作为非合意产出的农业水资源利用绿色技术进步带来的环境污染减排积极影响更强;农业经济发展水平与4类污染排放分别体现为倒N型、倒U型、正N型和倒N型的关系,随着农业经济发展水平的提升,我国绝大多数地区仍处于农药、化肥粗放使用的倒N型的上升阶段,农药流失和化肥施用引起的面源污染情况仍在加剧,农业经济发展水平与厩肥还田造成的面源污染相分离的状态逐渐消失,而农业水资源利用过程中产生的碳排放污染情况则不容乐观,大部分地区农业灌溉所产生的碳排放面临快速上升的趋势。

Abstract: Referring to the provincial panel data from 2002 to 2016, we took non-point source pollution caused by chemical fertilizer, non-point caused by farmyard manure, carbon emission during irrigation process and pesticide loss as the undesired output in the agricultural water resources utilization process. We constructed a water resources analysis framework centering on blue water and green water, and investigated the green technology progress of China's agricultural water resources utilization process by employing the SBM model and the Malmquist-Luenberger index. Moreover, adopting the spatial panel model, it examined the influences of the green technology progress and the agricultural economic development level while utilizing the water resources on the pollutant emission. The results showed that non-point source pollution caused by chemical fertilizer and pesticide loss all showed the characteristics of spatial aggregation. Given same input and desired output, promoting the green technology progress in agricultural water resources utilization could alleviate agricultural pollution. The environmental technology efficiency regarding the pesticide loss as the undesired output was more effective in reducing environmental pollution. The relationship between the agricultural economic development level and the aforementioned four types of pollution emissions were as follows respectively: inverted N-type, inverted U-type, N-type and inverted N-type. With the agricultural economy develops, most areas in China are still in the rising stage of inverted N-type use of pesticides and chemical fertilizer, and the situation of pesticide loss pollution and non-point source pollution caused by chemical fertilizer are exacerbating. The separation caused by agricultural economic development level and non-point source pollution caused by farmyard manure has gradually disappeared, while the carbon pollution generated by agricultural water resources utilization is unoptimistic.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王舒曼,谭 荣,吴丽梅. 农地资源舒适性价值评估——以江苏省为例[J]. 长江流域资源与环境, 2005, 14(6): 720 -724 .
[2] 张 虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3): 374 .
[3] 宋慧婷,吴振斌,贺 锋,成水平,梁 威,张丽萍. 武汉月湖和莲花湖表层沉积物中持久性有机物的污染状况[J]. 长江流域资源与环境, 2008, 17(3): 431 .
[4] 庄建琦, 崔鹏. 基于BP神经网络泥石流沟发育阶段的判定[J]. 长江流域资源与环境, 2009, 18(9): 849 .
[5] 焦文献|陈兴鹏. 基于STIRPAT模型的甘肃省环境影响分析[J]. 长江流域资源与环境, 2012, 21(01): 105 .
[6] 黄治勇 |牛 奔 |叶丽梅 |姚望玲 |王佑兵. 长江三峡库区极端大雾天气的气候变化特征[J]. 长江流域资源与环境, 2012, 21(05): 646 .
[7] 房国良 |高 原 |徐连军|胡 龙 |张善发. 上海市降雨变化与灾害性降雨特征分析[J]. 长江流域资源与环境, 2012, 21(10): 1270 .
[8] 张超亚, 张小林, 李红波. 快速交通对区域中心城市日常可达性影响——以长江三角洲地区为例[J]. 长江流域资源与环境, 2015, 24(02): 194 .
[9] 沈惊宏1,4, 余兆旺2, 沈宏婷3, 陆玉麒4. 基于修正场模型的区域空间结构演变及空间整合〖HT2”SS〗——以泛长江三角洲为例[J]. 长江流域资源与环境, 2015, 24(04): 557 .
[10] 李丹, 郭生练, 洪兴骏, 郭靖. 汉江流域1960~2014年降雨极值时空变化特征[J]. 长江流域资源与环境, 2016, 25(09): 1448 -1456 .