长江流域资源与环境 >> 2020, Vol. 29 >> Issue (9): 1986-1994.doi: 10.11870/cjlyzyyhj202009009

• 自然资源 • 上一篇    下一篇

岷江上游不同植被恢复模式枯落物层水源涵养能力

何淑勤1,2,3,宫渊波1,2 ,3,郑子成4   

  1. (1.四川农业大学林学院, 四川 成都 611130; 2.长江上游森林资源保育与生态安全国家林业和草原局重点实验室,四川 成都 6111300;3. 长江上游林业生态工程四川省重点实验室, 四川 成都 611130;4.四川农业大学资源学院, 四川 成都 611130)
  • 出版日期:2020-09-20 发布日期:2020-09-30

Water Conservation Capacity of Litters in Different Vegetation Restoration Patterns in the Upper Reaches of Minjiang River

HE Shu-qin 1,2,3,GONG Yuan-bo 1,2,3,ZHENG Zi-cheng 4   

  1. (1. College of Forestry, sichuan Agriculture University,Chengdu  611130,China;2.Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River,Chengdu  611130,China; 3.Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River,Chengdu  611130,China;4. College of Resources,Sichuan Agricultural University, Chengdu 611130,China)
  • Online:2020-09-20 Published:2020-09-30

摘要: 为了阐明不同植被恢复模式水源涵养功能,采用野外调查与室内分析相结合的方法,以岷江上游山地森林-干旱河谷交错带为研究对象,开展不同植被恢复模式枯落物层现存量、持水过程、吸水过程等方面研究。结果表明:不同植被恢复模式中,枯落物现存量大小依次是天然次生林>刺槐林>岷江柏-油松幼林>岷江柏幼林>沙棘+金花小檗灌丛>荒草地。不同植被恢复模式枯落物半分解层占现存总量比例均在60%以上,且均大于未分解层占现存总量比例,其中岷江柏幼林最高(79.89%),天然次生林最低(60.66%)。刺槐林和天然次生林模式枯落物最大持水量较大,分别为53.25和53.22 t·hm-2,岷江柏-油松幼林模式次之,荒草地最小。不同植被恢复模式枯落物半分解层持水量均大于未分解层,且持水量与浸水时间间呈对数、幂函数、线性和指数函数等关系;而枯落物未分解层、半分解层的吸水速率与浸泡时间均呈幂函数关系。研究成果可为区域合理选择植被恢复模式提供科学参考。

Abstract: In order to clarify the water conservation functions of different vegetation restoration patterns. Based on the methods of field survey and indoor analysis, taking mountain forest-arid valley intersection zone in the upper Minjiang River as the research object, the existing litter layer, water holding process and water absorption process were carried out under different vegetation restoration patterns. Under different vegetation restoration patterns, the litter stock of the litter showed an order of NSF>LF>MP>M >S> G. Under different vegetation restoration patterns, the proportion of semidercomposed litter layer in the existing total was higher than that of undecomposed litter layer, which were more than 60%. The proportion of semidercomposed litter layer was the highest for the pattern of M(79.89%), and the pattern of NSF was the lowest(60.66%). The maximum water holding capacity of litter was 53.25 t·hm-2 and 53.22 t·hm-2, respectively for the pattern of LF and NSF, followed by that of MP pattern, and the maximum water holding capacity of litter in G pattern was the least. Under different vegetation restoration patterns, the water holding capacity of the semi-decomposed litter layer was higher than that of the undecomposed litter layer, and the relationship between water holding capacity and time of soaking showed mutiple correlation such as logarithmic, power function, linear and exponential function. The relationship between water absorption rate and time of soaking for the undecomposed layer and semi-decomposed layer of litters showed the power functions under different vegetation restoration patterns. The results can provide scientific foundation for the rational selection of vegetation restoration patterns in the region.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[2] 张梦薇, 吕成文. 丰乐河流域表层土壤有机碳空间变异特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1420 .
[3] 韦汝虹, 金 李, 方 达. 基于GIS的中国城市房地产泡沫的空间传染性分析——以2006~2014年35个大中城市为例[J]. 长江流域资源与环境, 2018, 27(09): 1967 -1977 .
[4] 张丽琴, 渠丽萍, 吕春艳, 李 玲. 基于空间格局视角的武汉市土地生态系统服务价值研究[J]. 长江流域资源与环境, 2018, 27(09): 1988 -1997 .
[5] 田雨 周宝同 付伟 王蓉. 2000-2015年山地城市土地利用景观格局动态演变研究—以重庆市渝北区为例[J]. 长江流域资源与环境, 0, (): 0 .
[6] 曾源源, 胡守庚, 瞿诗进, . 长江中游经济带交通区位条件变化与建设用地扩张时空耦合规律[J]. 长江流域资源与环境, 2018, 27(12): 2651 -2662 .
[7] 梁辉 王春凯. 201904产业发展对城市蔓延影响的差异性分析—以长江经济带104个城市为例[J]. 长江流域资源与环境, 0, (): 0 .
[8] 杨远琴, 任 平, 洪步庭, . 基于生态安全的三峡库区重庆段土地利用冲突识别[J]. 长江流域资源与环境, 2019, 28(02): 322 -332 .
[9] 王 倩, 王云琦, 马 超, 王 彬, 李一凡. 缙云山针阔混交林碳通量变化特征及影响因子研究[J]. 长江流域资源与环境, 2019, 28(03): 565 -576 .
[10] 卢德彬, 毛婉柳, 杨东阳, 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, 2019, 28(03): 651 -660 .