长江流域资源与环境 >> 2021, Vol. 30 >> Issue (4): 839-848.doi: 10.11870/cjlyzyyhj202104007

• 自然资源 • 上一篇    下一篇

杭州湾北岸多年水沙特性变化及原因探讨

吴雪枫,何  青*,郭磊城,王宪业,张  迨   

  1. (华东师范大学河口海岸国家重点实验室,上海 200241)
  • 出版日期:2021-04-20 发布日期:2021-05-17

Changes of Hydrodynamics, Sediment Transport, and Morphology Along The North Bank of Hangzhou Bay Between 1982 and 2017

WU Xue-feng,HE Qing,GUO Lei-cheng,WANG Xian-ye,ZHANG Dai   

  1. (State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200241, China)
  • Online:2021-04-20 Published:2021-05-17

摘要: 强潮作用下杭州湾北岸受到围垦等人类活动的影响。基于1982和2017年实测数据对比分析了35年来杭州湾北岸的潮流、含沙量、盐度和地形变化。研究表明:与1982年相比,区域内的潮流场结构整体不变,各测点均呈往复流态势,多年来涨潮流速大于落潮流速;研究区域内多年垂向平均含沙量下降22%,底部高浓度集中,表底层浓度梯度增大,含沙量高值区在空间上的分布由芦潮港向湾内移动,金山深槽区的含沙量增长了79%。综合岸线和水下地形变化与长江减沙、地貌冲淤和局地人类活动密切相关,杭州湾北岸仍将面临侵蚀的风险威胁。

Abstract: Under the influence of strong tide, the north bank of Hangzhou bay is affected by human activities such as reclamation. Base on the measured data in 1982 and 2017, this paper analyzes the dynamic variation characteristics of the tide dynamics, suspended sediment concentration (SSC), salinity and morphology of the north bank of Hangzhou Bay in 35 years. Compared with 1982, the tidal current fields is unchanged in the region, appearing the character of reciprocating flow. Flood velocity is faster than fall. The depth-average SSC in the study area decreased by 22%. The spatial distribution of the high SSC area moved from Luchaogang to the inward bay, the bottom SSC was concentrated, the concentration gradient of surface and bottom layer increases. The SSC in the Jinshan Trough increased by 79% over the years. In the study area. In consideration of the changes of coastline and topography, it is closely related to the sediment load reduction of the Yangtze River, topography erosion and deposition, and local human activities. The north bank of Hangzhou Bay will still face the risk of erosion.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈永柏, 邓 云| 梁瑞峰. 溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J]. 长江流域资源与环境, 2010, 19(03): 340 .
[2] 刘春霞, 李月臣, 杨华. 三峡库区(重庆段)石漠化敏感性评价及空间分异特征[J]. 长江流域资源与环境, 2011, 20(3): 291 .
[3] 陈文静| 张燕萍| 赵春来| 王昌来. 近年长江湖口江段鱼类群落组成及多样性[J]. 长江流域资源与环境, 2012, 21(06): 684 .
[4] 曹志宏 |陈志超 |郝晋珉. 中国城乡居民食品消费变化趋势分析[J]. 长江流域资源与环境, 2012, 21(10): 1173 .
[5] 刘耀彬|戴 璐|张桂波. 水环境胁迫下的环鄱阳湖区城市化格局响应[J]. 长江流域资源与环境, 2014, 23(01): 81 .
[6] 曾泽国, 张笑辰, 刘观华, 金杰峰, 陈家宽, 金斌松. 鄱阳湖子湖"堑秋湖"渔业资源结构特征分析[J]. 长江流域资源与环境, 2015, 24(06): 1021 -1029 .
[7] 吴志勇1,徐征光1,肖恒2,吴宏伟1. 基于模拟土壤含水量的长江上游#br# 干旱事件时空特征分析[J]. 长江流域资源与环境, 2018, 27(01): 96 .
[8] 邓鹏鑫, 邴建平, 贾建伟, 王栋. 汉江流域1956~2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(09): 2132 -2141 .
[9] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[10] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .