长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1507-1513.doi: 10.11870/cjlyzyyhj201509010

• 自然资源 • 上一篇    下一篇

长江口沿岸碎波带刀鲚仔稚鱼摄食习性与浮游动物分布的相关性研究

蒋雪莲1, 张宇2, 钟俊生1, 陈渊戈3, 吴美琴1   

  1. 1. 上海海洋大学水产与生命学院, 上海 201306;
    2. 北京水世纪生物技术有限公司, 北京 102600;
    3. 中国水产科学院东海水产研究所农业部海洋与河口渔业重点开放实验室, 上海 200090
  • 收稿日期:2014-12-19 修回日期:2015-04-08 出版日期:2015-09-20
  • 作者简介:蒋雪莲(1990~),女,硕士研究生,主要研究方向为生物学.E-mail:tianshan1110@126.com
  • 基金资助:
    长江渔业资源管理委员会办公室项目(D-8005-11-0063);上海市重点学科水生生物学建设项目(S0701)

Study on relationship between distribution of zooplankton and Coilia nasus larvae feeding features in the surf zone of yangtze river estuary

JIANG Xue-lian1, ZHANG Yu2, ZHONG Jun-sheng1, CHEN Yuan-ge3, WU Mei-qin1   

  1. 1. College of fisheries and life Science, Shanghai Ocean University, Shanghai 201306, China;
    2. Beijing Water century Biotechnology Co., Ltd. Beijing 102600, China;
    3. Key and Open Laboratory of Marine and Estuary Fisheries Minister of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200090, China
  • Received:2014-12-19 Revised:2015-04-08 Online:2015-09-20
  • Contact: 钟俊生,E-mail:jszhong@shou.edu.cn E-mail:jszhong@shou.edu.cn

摘要: 为探明长江口沿岸碎波带浮游动物的分布与刀鲚仔稚鱼摄食的关系,2006年7~12月每月大潮期间在长江口沿岸碎波带设置13个站位点,用浮游Ⅰ型生物网(口径30 cm,网目0.2 mm)在表层拖曳采集浮游动物78次,采集到浮游动物72种,平均密度 3 278.95 个/网;用小型拖网(1 m×4 m,网目1 mm)拖曳234次,采集到刀鲚仔稚鱼 37 170 尾,平均密度158.85尾/网。通过胃含物分析共鉴定刀鲚仔稚鱼饵料生物15种(类)(浮游动物11种,浮游幼体4类),平均摄食密度1.306个/尾。研究结果表明:前弯曲期仔鱼偏好摄食哲水蚤、剑水蚤和枝角类;弯曲期仔鱼偏好摄食猛水蚤和桡足类桡足幼体;后弯曲期仔鱼除偏好摄食桡足类幼体以外,也偏好摄食游泳能力较强的糠虾;稚鱼对糠虾有极强的偏好。水温和盐度对刀鲚仔稚鱼的摄食量影响较小;浮游动物分布并不直接影响刀鲚仔稚鱼分布,相关性较小。

关键词: 浮游动物, 刀鲚仔稚鱼, 摄食, 影响

Abstract: To clarify the relationship between the distribution of zooplankton and Coilia nasus larvae and juveniles feeding features in the surf zone of Yangtze River estuary, zooplankton and Coilia nasus larvae and juveniles were both collected at the 13 stations by a zooplankton net (30 cm mouth-diameter, 0.2 mm mesh-aperture) and a seine net (1 m×4 m, 1 mm mesh-aperture) during the spring tide from July to December 2006, respectively. During the study period, 78 zooplankton net hauls were made, 72 species of zooplankton were collected, 234 seine hauls were made, and 37 170 individiuls of Coilia nasus larvae and juveniles were caught. The average density was 158.85 individuals per haul. Through the stomach content analysis, 15 species of food organisms (11 species of zooplankton and 4 kinds of planktonic larvae) were observed. Among them, the number of Calanoida was the highest, accounting for 69.21% of the total; Cladocera accounted for 17.30%; the lowest was Gastropods larvae, only accounting for 0.14%. The average feeding density of Coilia nasus larvae and juveniles was 1.306 ind/ind. The average feeding density of larvae in preflexion stage was 0.195 ind/ind; larvae in flexion stage was 0.692 ind/ind; larvae in postflexion stage was 0.890 ind/ind; and juveniles was 4.697 ind/ind. The feeding density of Coilia nasus larvae and juveniles was higher at the middle and lower reaches than at the upstream of Yangtze River estuary. And the average empty gut rate of Coilia nasus larvae and juveniles was 63.70%. There was a strong negative correlation between empty gut rate and body length of Coilia nasus larvae and juveniles. All these results indicated that, larvae at pre-flexion stage with weak swimming ability chose to feed on Calanoida, Cyclopoida and Cladocera, such as Schmackeria poplesia, Sinocalanus sinensis and Bosmina coregoni. With their swimming ability improved in flexion stage, they fed on copepod larvae and Harpacticoida. Post-flexion stage larvae preferred to feed on copepod larvae and Acanthomysis longirostris. Juveniles also had a strong preference on Acanthomysis longirostris. The relativity analysis between the abundance of Coilia nasus larvae and juveniles and zooplankton showed that the temperature and salinity had small influence on the feed of larvae and juveniles; and the abundance of larvae and juveniles did not directly affected by the distribution of zooplankton, the correlation between them was not significant; the swimming ability was weak for larvae in preflexion stage, and their feeding affected by the density of zooplankton and the density of Coilia nasus of the integrated influence.

Key words: Zooplankton, Coilia nasus larvae, Feeding, Influence

中图分类号: 

  • S932.4
[1] 中国水产科学研究院东海水产研究所,上海市水产研究所.上海鱼类志[M].上海:上海科学技术出版社,1990.
[2] 陈文银,李家乐,练青平.长江刀鲚性腺发育的组织学研究[J].水产学报,2006,30(6):773-777.
[3] 张敏莹,徐东坡,刘 凯,等.长江下游刀鲚生物学及最大持续产量研究[J].长江流域资源与环境,2005,14(6):694-698.
[4] 赵春来,陈文静,张燕萍,等.刀鲚的生物学特性及资源现状分析[J].江西水产科技,2007(2):21-23.
[5] 袁传宓,秦安舲.我国近海鲚鱼生态习性及其产量变动状况[J].海洋科学,1984,5:35-37.
[6] 施德龙,龚洪新.关于保护长江口刀鲚资源的建议[J].海洋渔业,2003,25(2):96-97.
[7] 郭弘艺,唐文乔.长江口刀鲚矢耳石重量与年龄的关系及其在年龄鉴定中的作用[J].水产学报,2006,30(3):347-352.
[8] 袁传宓,林金榜,刘仁华,等.刀鲚的年龄和生长[J].水生生物学集刊,1978,6(3):285-298.
[9] 黎雨轩,何文平,刘家寿,等.长江口刀鲚耳石年轮确证和年龄与生长研究[J].水生生物学报,2010,34(4):787-793.
[10] 闻海波,张呈祥,徐钢春,等.长江刀鲚与池塘人工养殖刀鲚性腺发育的初步观察[J].动物学杂志,2009,44(4):111-117.
[11] 何 为,李家乐,江芝娟.长江刀鲚性腺的细胞学观察[J].上海水产大学学报,2006,15(3):292-296.
[12] 何 为,李家乐.长江刀鲚性腺发育规律的研究[J].中国水产,2006(5):70-72.
[13] 管卫兵,陈辉辉,丁华腾,等.长江口刀鲚洄游群体生殖特征和条件状况研究[J].海洋渔业,2010,32(1):73-81.
[14] 葛珂珂,钟俊生.长江口沿岸碎波带刀鲚仔稚鱼的日龄组成与生长[J].水生生物学报,2010,34(4):716-721.
[15] 葛珂珂,钟俊生,吴美琴,等.长江口沿岸碎波带刀鲚仔稚鱼的数量分布[J].中国水产科学,2009,16(6):923-930.
[16] 钟俊生,吴美琴,练青平.春、夏季长江口沿岸碎波带仔稚鱼的种类组成[J].中国水产科学,2007,14(3):436-443.
[17] COCKCROFT A C, MCLACHLAN A. Nitrogen regeneration by the surf zone penaeid prawn Macropetasma africanus[J]. Marine Biology, 1987, 96(3): 343-348.
[18] MARIN JARRIN J R, SHANKS A L, BANKS M A. Confirmation of the presence and use of sandy beach surf-zones by juvenile Chinook salmon[J]. Environmental Biology of Fishes, 2009, 85(2): 119-125.
[19] ODEBRECHT C, BERGESCH M, RÖRIG L R, et al. Phytoplankton interannual variability at Cassino beach, southern Brazil (1992-2007), with emphasis on the surf zone diatom Asterionellopsis glacialis[J]. Estuaries and Coasts, 2010, 33(2): 570-583.
[20] 蒋日进,钟俊生,张冬良,等.长江口沿岸碎波带仔稚鱼的种类组成及其多样性特征[J].动物学研究,2008,29(3):297-304.
[21] 钟俊生,郁蔚文,刘必林,等.长江口沿岸碎波带仔稚鱼种类组成和季节性变化[J].上海水产大学学报,2005,14(4):375-382.
[22] AYVAZIAN S G, HYNDES G A. Surf-zone fish assemblages in south-western Australia: do adjacent nearshore habitats and the warm Leeuwin current influence the characteristics of the fish fauna?[J]. Marine Biology, 1995, 122(4): 527-536.
[23] 张达娟,闫启仑,王真良.典型河口浮游动物种类数及生物量变化趋势的研究[J].海洋与湖沼,2008,39(5):536-540.
[24] 郭沛涌,沈焕庭,刘阿成,等.长江河口浮游动物的种类组成、群落结构及多样性[J].生态学报,2003,23(5):892-900.
[25] 李开枝,尹健强,黄良民.河口浮游动物生态学研究进展[J].海洋科学,2007,31(3):72-75.
[26] 刘光兴,陈洪举,朱延忠,等.三峡工程一期蓄水后长江口及其邻近水域浮游动物的群落结构[J].中国海洋大学学报自然科学版,2007,37(5):789-794.
[27] 徐 韧,李亿红,李志恩,等.长江口不同水域浮游动物数量特征比较[J].生态学报,2009,29(4):1688-1696.
[28] NOGUEIRA M G. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil[J]. Hydrobiologia, 2001, 455(1/3): 1-18.
[29] 徐兆礼.长江口北支水域浮游动物的研究[J].应用生态学报,2005,16(7):1341-1345.
[30] 张锦平,徐兆礼,汪 琴,等.长江口九段沙附近水域浮游动物生态特征[J].上海水产大学学报,2005,14(4):383-389.
[31] 陈亚瞿,胡方西.长江口河口锋区浮游动物生态研究Ⅱ种类组成,群落结构,水系指示种[J].中国水产科学,1995,2(1):59-63.
[32] 王 克,王 荣,左 涛,等.长江口及邻近海区浮游动物总生物量分析[J].海洋与湖沼,2004,35(6):568-576.
[33] VOSS R, KÖSTER F W, DICKMANN M. Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea[J]. Fisheries Research, 2003, 63(1): 97-111.
[34] INOUE T, SUDA Y, SANO M. Surf zone fishes in an exposed sandy beach at Sanrimatsubara, Japan: Does fish assemblage structure differ among microhabitats?[J]. Estuarine, Coastal and Shelf Science, 2008, 77(1): 1-11.
[35] HAJISAMAE S, CHOU L M, IBRAHIM S. Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical habitat[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 89-98.
[36] ISLAM M S, TANAKA M. Diet and prey selection in larval and juvenile Japanese anchovy Engraulis japonicus in Ariake Bay, Japan[J]. Aquatic Ecology, 2009, 43(2): 549-558.
[37] INOUE T, SUDA Y, SANO M. Food habits of fishes in the surf zone of a sandy beach at Sanrimatsubara, Fukuoka Prefecture, Japan[J]. Ichthyological Research, 2005, 52(1): 9-14.
[38] 郑 重,李少菁,许振祖.海洋浮游生物学[M].北京:海洋出版社,1984.
[39] 张武昌,赵 楠,陶振铖,等.中国海浮游桡足类图谱[M].北京:科学出版社,2010.
[40] 束蕴芳,韩茂森.中国海洋浮游生物图谱[M].北京:海洋出版社,1993.
[41] KENDALL A W JR, AHLSTROM E H, MOSER H G. Early life history stages of fishes and their characters[M]//MOSER H G, RICHARDS W J, COHEN D M, et al. eds. Ontogeny and Systematics of Fishes. The American Society of Ichthyologists Herpetologists, Lawrence: Allen Press Inc, 1984.
[42] 殷名称.鱼类生态学[M].北京:中国农业出版社,1995.
[43] MEEKAN M G, VIGLIOLA L, HANSEN A, et al. Bigger is better: size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis[J]. Marine Ecology Progress Series, 2006, 317: 237-244.
[44] TAKASUKA A, AOKI I, OOZEKI Y. Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus[J]. Marine Ecology Progress Series, 2007, 350: 99-107.
[45] 黎伟新.仔稚鱼摄食行为研究简述[J].水利渔业,1999,19(5):6.
[46] 孟田湘.山东半岛南部癆鱼产卵场癆鱼仔、稚鱼摄食的研究[J].海洋水产研究,2001,22(2):21-25.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 罗文斌, 孟贝, 钟诚. 农地整理项目治理绩效及影响因素研究——以浙江省48个国投项目为例[J]. 长江流域资源与环境, 2017, 26(02): 180-189.
[3] 纪红蕾, 蔡银莺. 生计资本异质对农户农地流转行为的影响——以武汉城市郊区的516户农民为例[J]. 长江流域资源与环境, 2017, 26(02): 220-226.
[4] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[5] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[6] 汤勇, 张薇, 薛俊增, 陈立婧. 长江口大洋山近岸水域浮游植物群落及其与环境因子的关系[J]. 长江流域资源与环境, 2016, 25(08): 1176-1183.
[7] 侯祎亮, 安艳玲, 吴起鑫, 吴旌滔, 黄娟, 段少琼, 刘霄. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(07): 1121-1128.
[8] 卿晓霞, 王兆兴, 周健, 黄巍. 山地城市小型季节性河流雨洪淹没的数值模拟[J]. 长江流域资源与环境, 2016, 25(04): 679-684.
[9] 周启刚, 焦欢, 王兆林, 陈倩, 国洪磊. 西南山地丘陵区典型乡镇环境因素对农村新建居民点布局与复垦的影响差异分析[J]. 长江流域资源与环境, 2016, 25(02): 274-283.
[10] 胡雪萍, 李丹青. 城镇化进程中生态足迹的动态变化及影响因素分析——以安徽省为例[J]. 长江流域资源与环境, 2016, 25(02): 300-306.
[11] 任平, 洪步庭, 周介铭. 基于空间自相关模型的农村居民点时空演变格局与特征研究[J]. 长江流域资源与环境, 2015, 24(12): 1993-2002.
[12] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[13] 潘晓洁, 黄一凡, 郑志伟, 邹曦, 朱梦灵, 胡莲, 万成炎. 三峡水库小江夏初水华暴发特征及原因分析[J]. 长江流域资源与环境, 2015, 24(11): 1944-1952.
[14] 杜俊, 丁文峰, 任洪玉. 四川省不同类型山洪灾害与主要影响因素的关系[J]. 长江流域资源与环境, 2015, 24(11): 1977-1983.
[15] 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .