长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 273-281.doi: 10.11870/cjlyzyyhj201702013

• 生态环境 • 上一篇    下一篇

太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例

杨超杰1,2, 贺斌1, 段伟利1, 李冰1,2, 陈雯1, 杨桂山1   

  1. 1. 中国科学院南京地理与湖泊研究所流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2016-06-29 修回日期:2016-11-07 出版日期:2017-02-20
  • 通讯作者: 贺斌,E-mail:hebin@niglas.ac.cn E-mail:hebin@niglas.ac.cn
  • 作者简介:杨超杰(1991~),女,硕士研究生,主要从事水质监测与水环境保护.E-mail:cjyang200923@163.com
  • 基金资助:
    中国科学院“百人计划”项目(Y5BR011001);国家自然科学基金项目(41471460,42501552);江苏省自然科学基金项目(BK20161612)

ANALYSING THE SPATIAL AND TEMPORAL VARIATIONS AND INFLUENCING FACTORS OF THE WATER QUALITY IN A TYPICAL HILLY WATER SOURCE OF LAKE TAIHU BASIN: A CASE STUDY IN PINGQIAO RIVER WATERSHED

YANG Chao-jie1,2, HE Bin1, DUAN Wei-li1, LI Bing1,2, CHEN Wen1, YANG Gui-shan1   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-06-29 Revised:2016-11-07 Online:2017-02-20
  • Supported by:
    One Hundred Projects, Chinese Academy of Sciences (Y5BR011001);National Natural Science Foundation of China (41471460, 41501552);National Natural Science Foundation of Jiangsu Province(BK21061612)

摘要: 基于太湖流域典型丘陵水源地平桥河流域12个采样点的水质监测数据,综合运用聚类分析和主成分分析法对平桥河流域水质时空变化及影响因素进行分析。聚类分析显示,按照水质相似性将平桥河流域水质分为枯水期、平水期、丰水期3个季节时段和中上游丘陵河谷区、下游紧邻平桥镇的平原区、下游暗沟出口区3个典型空间区域。主成分分析显示:(1)枯水期水质以氮污染为主导因素,磷和有机污染次之,受流量减小、流速缓慢导致的营养盐富集的影响加大;平水期水质以氮污染为主导因素,磷污染次之,受茶园等大量施肥导致的农业面源污染的影响;丰水期水质以氮和磷污染为主导因素,受到水稻种植等农业活动和大量降雨径流的影响。(2)中上游丘陵河谷区水质以氮和磷污染为主导因素,有机污染次之,受到茶园种植等农业活动导致的面源污染的影响;下游紧邻平桥镇的平原区水质以氮和磷的污染为主导因素,有机污染次之,受到居民生活污水和农业生产的影响;下游暗沟出口区水质以氮污染为主导因素,有机污染和磷污染次之,受到生活污水、农业生产和畜禽养殖的影响。研究结果可为太湖流域丘陵区水源地保护和管理提供参考。

关键词: 水质, 聚类分析, 主成分分析, 时空变化, 影响因素, 平桥河流域

Abstract: Multivariate statistical methods such as cluster analysis (CA) and principle component analysis (PCA) were used to analyze the spatial and temporal variations and influencing factors of the water quality in a typical hilly water source of the Taihu Lake basin:Pingqiao River watershed. The water samples were collected first at 12 sampling sites along the Pingqiao River. Then the hierarchical CA grouped 12 months into three seasons (dry season, normal season and wet season) and classified the 12 sampling sites into three groups (hierarchical hills valley region, the town of downstream adjacent to Pingqiao plains and the downstream drainage outlet region) based on different seasons and levels of pollution. PCA results showed that:(1) In the dry season, the water quality was mainly determined by levels of nitrogen, phosphorus and organic matter levers, and it was affected by substantial reduce in runoff and the enrichment of nutrients; In the normal season, water quality was mainly determined by the levels of nitrogen and phosphorus, and it was influenced by non-point source pollution from agricultural activities such as plantation; While in the wet season, water quality was mainly determined by the nitrogen and phosphorus, and it was affected by agricultural activity (mainly crop plantation rice) and a substantial storm discharge with high of nutrients. (2) In the hierarchical hills valley region, water quality was mainly determined by nitrogen, phosphorus and organic matter, and it was affected by non-point source pollution (tea plantation); In the town of downstream adjacent to Pingqiao plains, water quality was mainly determined by nitrogen, phosphorus and organic matter, and it was affected by domestic sewage and agricultural production; While in the downstream drainage outlet region, the water quality was mainly determined in order of nitrogen, organic matter and phosphorus, and it was effected by Sewage from agricultural production and livestock breeding. Our research could help in water source projection and local government management in Lake Taihu Basin.

Key words: water quality, cluster analysis, principle component analysis, temporal and spatial variation, influence factor, Pingqiao River watershed

中图分类号: 

  • X52
[1] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6):799-810.[YANG G S, MA R H, ZHANG L, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6):799-810.]
[2] 张运林, 陈伟民, 杨顶田, 等. 天目湖2001~2002年环境调查及富营养化评价[J]. 长江流域资源与环境, 2005, 14(1):99-103.[ZHANG Y L, CHEN W M, YANG D T, et al. Main physical and chemical factors in Tianmuhu Lake, with evaluation of eutrophication from 2001 to 2002[J]. Resources and Environment in the Yangtze Basin, 2005, 14(1):99-103.]
[3] 吴建丰, 陈泽民. 天目湖富营养化现状研究[J]. 污染防治技术, 2006, 19(6):23-25.[WU J F, CHEN Z M. Study on eutrophication in Shahe reservoir[J]. Pollution Control Technology, 2006, 19(6):23-25.]
[4] 高永霞, 朱广伟, 贺冉冉, 等. 天目湖水质演变及富营养化状况研究[J]. 环境科学, 2009, 30(3):673-679.[GAO Y X, ZHU G W, HE R R, et al. Variation of water quality and trophic state of Lake Tianmu, China[J]. Environmental Science, 2009, 30(3):673-679.]
[5] 施练东, 竺维佳, 胡菊香, 等. 汤浦水库及入库支流水质时空变化特征与影响因素分析[J]. 水生态学杂志, 2013, 34(5):9-15.[SHI L D, ZHU W J, HU J X, et al. Characteristics and influencing factors analysis of spatio-temporal variations of water quality in Tangpu reservoir and its tributaries[J]. Journal of Hydroecology, 2013, 34(5):9-15.]
[6] ZHOU F, GUO H C, LIU Y, et al. Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong[J]. Marine Pollution Bulletin, 2007, 54(6):745-756.
[7] SIMEONOV V, STRATIS J A, SAMARA C, et al. Assessment of the surface water quality in Northern Greece[J]. Water Research, 2003, 37(17):4119-4124.
[8] SINGH K P, MALIK A, MOHAN D, et al. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study[J]. Water Research, 2004, 38(18):3980-3992.
[9] OGWUELEKA T C. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria[J]. Environmental Monitoring and Assessment, 2015, 187:137.
[10] DUAN W L, HE B, TAKARA K, et al. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007[J].Chemosphere, 2013, 93(6):946-953
[11] DUAN W L, TAKARA K, HE B, et al. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010[J]. Science of the Total Environment, 2013, 461:499-508.
[12] 胡开明, 李冰, 王水, 等. 太湖流域(江苏省)水质污染空间特征[J]. 湖泊科学, 2014, 26(2):200-206.[HU K M, LI B, WANG S, et al. Spatial distribution characteristics of water quality pollution in the Lake Taihu basin, Jiangsu Province[J]. Journal of Lake Sciences, 2014, 26(2):200-206.]
[13] 王刚, 李兆富, 万荣荣, 等. 基于多元统计分析方法的西苕溪流域水质时空变化研究[J]. 农业环境科学学报, 2015, 34(9):1797-1803.[WANG G, LI Z F, WAN R R, et al. Analysis of temporal and spatial variations in water quality of Xitiaoxi watershed using multivariate statistical techniques[J]. Journal of Agro-Environment Science, 2015, 34(9):1797-1803.]
[14] 丁春, 盛周君. 基于主成分分析法的南淝河水质综合评价[J]. 安徽农业科学, 2007, 35(35):11583-11584, 11586.[DING C, SHENG Z J. Evaluation of water quality evaluation in the South Feihe River based on principal component analysis[J]. Journal of Anhui Agricultural Sciences, 2007, 35(35):11583-11584, 11586.]
[15] 欧阳勇, 林昌虎, 何腾兵, 等. 运用主成分分析法评价贵州草海水质污染[J]. 贵州科学, 2012, 30(1):21-26.[OUYANG Y, LIN C H, HE T B, et al. Application of principal component analysis on water quality assessment of Caohai Lake in Guizhou[J]. Guizhou Science, 2012, 30(1):21-26.]
[16] 叶麟, 黎道丰, 唐涛, 等. 香溪河水质空间分布特性研究[J]. 应用生态学报, 2003, 14(11):1959-1962.[YE L, LI D F, TANG T, et al. Spatial distribution of water quality in Xiangxi River, China[J]. Chinese Journal of Applied Ecology, 2003, 14(11):1959-1962.]
[17] 聂小飞, 李恒鹏, 黄群彬, 等. 天目湖流域丘陵山区典型土地利用类型氮流失特征[J]. 湖泊科学, 2013, 25(6):827-835.[NIE X F, LI H P, HUANG Q B, et al. Characteristics of nitrogen loss via runoff from typical land uses in hilly area of Tianmuhu Reservoir watershed[J]. Journal of Lake Sciences, 2013, 25(6):827-835.]
[18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:210-284.[State Environmental Protection Agency. Water and Wastewater Monitoring Analysis Method[M]. 4th ed. Beijing:China Environmental Science Press, 2002:210-284. (未找到本条文献英文信息,请核对)]
[19] 张旋, 王启山, 于淼, 等. 基于聚类分析和水质标识指数的水质评价方法[J]. 环境工程学报, 2010, 4(2):476-480.[ZHANG X, WANG Q S, YU M, et al. An approach for water quality assessment based on hierarchical cluster analysis and comprehensive water quality identification index[J]. Chinese Journal of Environmental Engineering, 2010, 4(2):476-480.]
[20] SHEN Y N, LÜ J, CHEN D J, et al. Response of stream pollution characteristics to catchment land cover in Cao-E River basin, China[J]. Pedosphere, 2011, 21(1):115-123.
[21] HUANG J L, PONTIUS R G Jr, LI Q S, et al. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China[J]. Applied Geography, 2012, 34:371-384.
[22] LIU C W, LIN K H, KUO Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan[J]. Science of the Total Environment, 2003, 313(1/3):77-89.
[23] SHRESTHA S, KAZAMA F. Assessment of surface water quality using multivariate statistical techniques:a case study of the Fuji river basin, Japan[J]. Environmental Modelling & Software, 2007, 22(4):464-475.
[24] SOLANKI V R, HUSSAIN M M, RAJA S S. Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India[J]. Environmental Monitoring and Assessment, 2010, 163(1/4):411-419.
[25] DUAN W L, HE B, NOVER D, et al. Water quality assessment and pollution source identification of the Eastern Poyang Lake basin using multivariate statistical methods[J]. Sustainability, 2016, 8(2):133.
[26] KAZI T G, ARAIN M B, JAMALI M K, et al. Assessment of water quality of polluted lake using multivariate statistical techniques:a case study[J]. Ecotoxicology and Environmental Safety, 2009, 72(2):301-309.
[27] 韩莹, 李恒鹏, 聂小飞, 等. 太湖上游低山丘陵地区不同用地类型氮、磷收支平衡特征[J]. 湖泊科学, 2012, 24(6):829-837.[HAN Y, LI H P, NIE X F, et al. Nitrogen and phosphorus budget of different land use types in hilly area of Lake Taihu upper-river basin[J]. Journal of Lake Sciences, 2012, 24(6):829-837.]
[28] 王艾荣, 罗汉金, 梁博, 等. 硝化细菌在3种沉积土壤中的变化规律研究:Ⅱ. 硝化细菌与pH等因子之间的关系[J]. 农业环境科学学报, 2008, 27(3):970-977.[WANG A R, LUO H J, LIANG B, et al. Variation of nitrifier populations in three sedimentary soils:Ⅱ. Relationships between nitrifier populations, pH and other factors[J]. Journal of Agro-Environment Science, 2008, 27(3):970-977.]
[29] 朱广伟, 陈伟民, 李恒鹏, 等. 天目湖沙河水库水质对流域开发与保护的响应[J]. 湖泊科学, 2013, 25(6):809-817.[ZHU G W, CHEN W M, LI H P, et al. Response of water quality to the catchment development and protection in Tianmuhu Reservoir, China[J]. Journal of Lake Sciences, 2013, 25(6):809-817.]
[30] 韩晓霞, 朱广伟, 李兆富, 等. 天目湖沙河水库尿素含量及其时空分布特征分析[J]. 环境化学, 2015, 34(2):377-383.[HAN X X, ZHU G W, LI Z F, et al. The abundance and spatial-temporal distribution of urea in Shahe Reservoir, Liyang, China[J]. Environmental Chemistry, 2015, 34(2):377-383.]
[31] SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques-a case study[J]. Analytica Chimica Acta, 2005, 538(1/2):355-374.
[32] YANG Y H, ZHOU F, GUO H C, et al. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods[J]. Environmental Monitoring and Assessment, 2010, 170(1/4):407-416.
[33] ALEXANDER R B, SMITH R A, SCHWARZ G E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J]. Nature, 2000, 403(6771):758-761.
[34] ISCEN C F, EMIROGLU Ö, ILHAN S, et al. Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey[J]. Environmental Monitoring and Assessment, 2008, 144(1/3):269-276.
[35] ABSALON D, MATYSIK M. Changes in water quality and runoff in the Upper Oder River Basin[J]. Geomorphology, 2007, 92(3/4):106-118.
[36] ZHOU F, GUO H C, LIU L. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong[J]. Environmental Geology, 2007, 53(2):295-305.
[37] 张清,孔明,唐婉莹等.太湖及主要入湖河流平水期水环境质量评价[J].长江流域资源与环境,2014,23(Z1):73-80.[ZHANG Qing, KONG Ming, TANG Wan-ying, et al. Water Quanlity Assessment in the Surface Waters from Taihu Lake and its Main Tributaries[J]. Resources and Environment in the Yangtze Basin, 2014,23(Z1):73-80.]
[38] 崔扬, 朱广伟, 李慧赟, 等. 天目湖沙河水库水质时空分布特征及其与浮游植物群落的关系[J]. 水生态学杂志, 2014, 35(3):10-18. (请核对文献序号)[CUI Y, ZHU G W, LI H Y, et al. Spatial and temporal distribution characteristics of water quality in Shahe reservoir within Tianmuhu reservoir and its relationship with phytoplankton community[J]. Journal of Hydroecology, 2014, 35(3):10-18.]
[39] 李恒鹏, 陈伟民, 杨桂山, 等. 基于湖库水质目标的流域氮、磷减排与分区管理——以天目湖沙河水库为例[J]. 湖泊科学, 2013, 25(6):785-798.[LI H P, CHEN W M, YANG G S, et al. Reduction of nitrogen and phosphorus emission and zoning management targeting at water quality of lake or reservoir systems:a case study of shahe reservoir within Tianmuhu Reservoir area[J]. Journal of Lake Sciences, 2013, 25(6):785-798.]
[40] 黄群芳, 张运林, 陈伟民, 等. 天目湖水文特征变化及其对上游湿地和湖泊生态环境的影响[J]. 湿地科学, 2007, 5(1):51-57.[HUANG Q F, ZHANG Y L, CHEN W M, et al. Variation of hydrological characteristics of Tianmu Lake and its effect on the Tianmuhu wetland and ecological environment of the Tianmu Lake[J]. Wetland Science, 2007, 5(1):51-57.]DUAN W L, HE B, TAKARA K, et al. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007[J]. Chemosphere, 2013, 93(6):946-953.DUAN W L, TAKARA K, HE B, et al. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010[J]. Science of the Total Environment, 2013, 461:499-508.
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578-2587.
[3] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[4] 王水霞, 殷淑燕, 赵芮芮, 周亚利. 秦岭南部地区农业气候资源的变化及其对油菜的影响[J]. 长江流域资源与环境, 2017, 26(06): 882-893.
[5] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[6] 卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(06): 925-936.
[7] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[8] 刘静, 殷淑燕. 1960~2014年秦岭南北无霜期时空变化特征及对比分析[J]. 长江流域资源与环境, 2017, 26(04): 615-623.
[9] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[10] 罗文斌, 孟贝, 钟诚. 农地整理项目治理绩效及影响因素研究——以浙江省48个国投项目为例[J]. 长江流域资源与环境, 2017, 26(02): 180-189.
[11] 卢德彬, 杨建, 毛婉柳, 禹真, 王祖静, 白彬. 山区农村居民点空间分布特征与空间重构研究[J]. 长江流域资源与环境, 2017, 26(02): 238-246.
[12] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[13] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[14] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[15] 叶潇潇, 赵一飞. 基于聚类分析的长江三角洲港口群可持续发展水平评价[J]. 长江流域资源与环境, 2016, 25(Z1): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .