长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1984-1992.doi: 10.11870/cjlyzyyhj201511024

• 自然灾害 • 上一篇    

基于流域演化的泥石流敏感性分析

向灵芝1, 李泳2, 陈洪凯1, 苏凤环2, 黄晓3   

  1. 1. 重庆交通大学岩土工程研究所, 重庆 400074;
    2. 中国科学院成都山地灾害与环境研究所, 中国科学院山地灾害与地表过程重点实验室, 四川 成都 610041;
    3. 河北师范大学汇华学院, 河北 石家庄 050000
  • 收稿日期:2015-01-05 修回日期:2015-03-30 出版日期:2015-11-20
  • 作者简介:向灵芝(1980~),女,讲师,博士,主要从事地质灾害风险研究.E-mail:xlz1223xlz@sina.com
  • 基金资助:
    2013年重庆高校创新团队建设计划资助项目(KJTD201305);南北活动构造带地震地质灾害研究与风险区划(12120114035601)

SENSITIVITY ANALYSIS OF DEBRIS FLOW ALONG HIGHWAY BASED ON GEOMORPHIC EVOLUTION THEORY

XIANG Ling-zhi1, LI Yong2, CHEN Hong-kai1, SU Feng-huan2, HUANG Xiao3   

  1. 1. Institute of Geotechnical Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
    2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chinese Academy Sciences Key Lab. of Mountain Hazards and Surface Processes, Chengdu 610041, China;
    3. Hui Hua College of Hebei Normal University, Shijiazhuang 050091, China
  • Received:2015-01-05 Revised:2015-03-30 Online:2015-11-20

摘要: 基于泥石流来源于某些处于特殊演化阶段的分支小流域的理论,分析了面积高程曲线及其参数与泥石流活动的关系。面积高程曲线积分值S表征流域内松散固体物质量,S/2对应的相对高差比值K表征流域源地面积在不同高程的分布,以SK为参数提出泥石流敏感性分析思路。针对汶川县主要公路(都汶公路和省道303)沿线泥石流敏感性分析,在Arcgis、Matlab等软件的支持下,基于震前1:50 000地形数据,计算了研究区泥石流流域的SK。根据计算结果,初步判定了各流域的地貌发育阶段,以及流域源地汇水区的高程位置。并根据震后泥石流实际活动情况,对于S小于0.5但又属于震后频发型,或者S值大于0.5但其面积较大且分支较多泥石流沟,进行了次一级子流域的面积高程值计算,判定其易发生泥石流具体源地。最后,根据流域面积高程值S得出了研究区泥石流敏感性分级图,分析结果基本反应了地貌演化对泥石流发生能力的潜在影响。

关键词: 地貌演化, 泥石流, 敏感性, 汶川县, 地震

Abstract: Debris flow is one of common disasters in the mountain aera, especially after the richer scale 8.0 earthquake in Wenchuan on 12 May 2008, in Sichuan Provence. A large quantityof loose materials which are caused by earthquake in vally are provided for debris flow. Expiated by heavy rainfall, regional group debirs flow hazards occurs, and causes serious property loses and threatens people's life. So the prediction of debris flow is urgent task now. But the formation of debris flow is so complicated that can't be predicted accurately. Some researchers consider small valley is the most active agent in landscape evolution, and debris flow in it takes the most energetic role in mass transportation. According to A.N.Stranler'S geomorphologic erosion circulation theory, the parameter of a drainage basin's hypsometric integral(S) is used for describing basin geomorphology. Lately the hypsometric integral has become an index to infer activities of disaster in some ravine, and is used to find the source region of debris flow. The paper, based on the theory of debris flow was derived from certain branch watershed which in special evolution stage, the relationship of hypsometric curve and the debris flow activities was anglicized. For the curve, integral value(S) of hypsometric integral curve was characterization of the solid material reserves for debris flow in the ravin. The larger parameter S is the indication of younger geomorphology stage of the ravine, and more rock,soil or other materials can be provided for debris flow. And parameter K which is the elevation ratio corresponding S/2 was characterization of elevation position of the debris flow source area initially. The larger parameter K is the indication of the higher elevation of the cathment area, and also better condition for the water gather for debris flow. As to sensitivity analysis for debris flow along highway in wenchuan county which has been seriously damaged in the earthquake, With the support of spatial analysis function of Arcgis and the matlab software, 1:50 000 terrain data before the earthquake in 2008 is used to calculate the parameter S and K for each debris flow ravine. The results showed landscape development stage of the basin and the elevation of catchment area. According to the actual disaster activity after earthquake, the hypsometric integral value of sub level basin debris flow gully with the features of S below 0.5 but frequent outbreaking, or large area and more branches was calculated. The results were used to discriminate the specific source for the debris flow. And according to S, the debris flow sensitivity were graded determined in the end. Then the potential influence of geomorphic evolution to debris flow activity was explained the results.

Key words: geomorphologic evolution, debris flow, sensitivity, Wenchuan County, earthquake

中图分类号: 

  • P642.23
[1] STRAHLER A N. Hypsometric (Area-Altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952, 63: 1117-1142.
[2] STRAHLER A N. Quantitative analysis of watershed geomorphology[J]. Eos, Transactions American Geophysical Union, 1957, 38: 913-920.
[3] STRAHLER A N. Quantitative geomorphology of drainage basins and channel networks[M]//CHOW V T. Handbook of Applied Hydrology. New York: McGraw-Hill, 1964:439-476.
[4] 艾南山,岳天祥.再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-9.
[5] 艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-8.
[6] 陆中臣,贾绍风,黄克新,等.流域地貌系统[M].大连:大连出版社,1991.
[7] LIFION N A, CHASE C G. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California[J]. Geomorphology, 1992, 5(1/2): 77-114.
[8] BROZOVIĆN, BURBANK D W, MEIGS A J. Climatic limits on landscape development in the northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574.
[9] CHEN Y C, SUNG Q C, CHENG K Y, et al. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis[J]. Geomorphology, 2003, 56(1/2): 109-137.
[10] BROCKLEHURST S H, WHIPPLE K X. Hypsometry of glaciated landscapes[J]. Earth Surface Processes and Landforms, 2004, 29(7): 907-926.
[11] MASEK J G, ISACKS B L, GUBBELS T L, et al. Erosion and tectonics at the margins of Continental Plateaus[J]. Journal of Geophysical Research, 1994, 99: 13941-13956.
[12] 信忠保,许炯心,马元旭.黄土高原面积-高程分析及其侵蚀地貌学意义[J].山地学报,2008,26(3):356-363.
[13] 吕学军,刘希林,苏鹏程.四川达曲河流域泥石流沟发育阶段的面积-高程分析[J].山地学报,2005,23(3):336-341.
[14] 李 泳,胡凯衡,苏凤环,等.流域演化与泥石流的系统性——以云南东川蒋家沟为例[J].山地学报,2009,27(4):449-456.
[15] 李 泳,陈晓清,胡凯衡,等.流域特征曲线与泥石流活动[J].山地学报,2006,24(3):320-326.
[16] 承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986:136-146.
[17] ROSENBLATT P, PINET P C. Comparative hypsometric analysis of Earth and Venus[J]. Geophysical Research Letters,1994, 21(6): 465-468.
[18] 赵洪壮,李有利,杨景春,等.面积高度积分的面积依赖与空间分布特征[J].地理研究,2010,29(2):271-282.
[19] 崔 鹏,庄建琦,陈兴长,等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版),2010,42(5):10-19.
[20] 张会平,杨 农,张岳桥,等.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135.
[1] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[2] 李彦稷, 颜春达, 胡凯衡, 魏丽. 典型暴雨泥石流堆积扇危害范围演变规律[J]. 长江流域资源与环境, 2017, 26(05): 789-796.
[3] 曹先磊, 张颖, 石小亮, 单永娟. 竹子造林CCER项目碳汇价值动态评估及敏感性分析[J]. 长江流域资源与环境, 2017, 26(02): 247-256.
[4] 刘秧, 余斌, 易伟, 朱云波, 刘强. 汶川地震后四川省安县黄洞子沟泥石流特征[J]. 长江流域资源与环境, 2016, 25(06): 996-1001.
[5] 史超, 夏军, 佘敦先, 万蕙, 黄金凤. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016, 25(04): 580-589.
[6] 杨渺, 谢强, 方自力, 刘孝富, 廖蔚宇, 王萍. “5·12”汶川地震极重灾区生态服务功能恢复总体评估[J]. 长江流域资源与环境, 2016, 25(04): 685-694.
[7] 黄海, 刘建康, 石胜伟. 大渡河上游八步里沟泥石流防治中的资源综合利用研究[J]. 长江流域资源与环境, 2015, 24(12): 2159-2165.
[8] 刘超琼, 彭开丽, 陈红蕾. 安徽省土地利用变化下的生态敏感性时空规律[J]. 长江流域资源与环境, 2015, 24(09): 1584-1590.
[9] 吴松, 安裕伦, 马良瑞. 城市化背景下喀斯特流域生态服务价值时空分异特征——以贵阳市南明河流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1591-1598.
[10] 杨世凡, 安裕伦, 王培彬, 马良瑞, 胡锋, 孙泉忠. 贵州赤水河流域生态红线区划分研究[J]. 长江流域资源与环境, 2015, 24(08): 1405-1411.
[11] 黄英, 丁明涛, 庙成, 王骏, 周鹏. 云南蒋家沟泥石流运动特征及其发展趋势[J]. 长江流域资源与环境, 2015, 24(08): 1434-1442.
[12] 庄建琦, 崔鹏. 基于BP神经网络泥石流沟发育阶段的判定[J]. 长江流域资源与环境, 2009, 18(9): 849-.
[13] 韩用顺, 崔 鹏, 王道杰, 于红波, 杨命青, 李朝奎. 泥石流滩地农业资源化开发与利用——以蒋家沟为例[J]. 长江流域资源与环境, 2009, 18(8): 753-.
[14] 罗, 俊| 王克林, 陈洪松, 张, 伟. 桂西北喀斯特地区水土流失敏感性评价[J]. 长江流域资源与环境, 2009, 18(6): 579-.
[15] 杨钟贤, 刘邵权, 苏春江. 汶川地震重灾区交通通达性分析[J]. 长江流域资源与环境, 2009, 18(12): 1166-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .