长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 996-1001.doi: 10.11870/cjlyzyyhj201606017

• 自然灾害 • 上一篇    下一篇

汶川地震后四川省安县黄洞子沟泥石流特征

刘秧, 余斌, 易伟, 朱云波, 刘强   

  1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059
  • 收稿日期:2015-09-21 修回日期:2015-12-11 出版日期:2016-06-20
  • 作者简介:刘秧(1990~),男,硕士研究生,主要研究方向为地质灾害防治.E-mail:438660648@qq.com
  • 基金资助:
    国家自然科学基金项目(41372366)

CHARACTERISTIC OF DEBRIS FLOW IN HUANGDONGZI GULLY OF SICHUAN PROVINCE AFTER THE WENCHUAN EARTHQUAKE

LIU Yang, YU Bin, YI Wei, ZHU Yun-bo, LIU Qiang   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2015-09-21 Revised:2015-12-11 Online:2016-06-20
  • Supported by:
    National Natural Science Foundation of China (Grant No. 41372366)

摘要: 2008年5月12日汶川地震诱发了黄洞子沟流域规模巨大的大光包滑坡,部分滑体前冲堆积于沟道内,直接为后期泥石流的形成提供了丰富的松散固体物质,改变了黄洞子沟泥石流形成条件,使黄洞子沟从一条非泥石流沟演变成了一条高频泥石流沟。震后黄洞子沟几乎每年雨季都会暴发不同规模的泥石流,其中以2013年"7·09"泥石流灾害规模和危害最大。本文着重分析了黄洞子沟泥石流形成特征,并从地形、降水和地质三个方面将黄洞子沟和文家沟进行对比,得出了物源堆积体颗粒粒径与泥石流形成的关系。

关键词: 黄洞子沟, 泥石流, 颗粒, 粒径

Abstract: The 2008 Wenchuan Earthquake induced a huge scale landslide in Huangdongzi gully, part of the sliding mass accumulation in the channel, provided abundant loose materials to the later formation of debris flow, changed the debris flow formation conditions of Huangdongzi gully, and made it from a non-debris flow gully to a high frequency of debris flow gully. Gaochuan village is near the fault, and the seismic esthesia is strong. After earthquake, in every rainy season Huangdongzi gully had different scale of debris flow. On September 24, 2008, July 17, 2009, August 13, 2010, August 17, 2012, July 9, 2013, debris flow happened, and the "7.09" debris flow had the largest scale and damage. This paper focused on the analysis of the debris flow formation characteristics of Huangdongzi gully, and compared Huangdongzi gully with Wenjia gully from terrain, rainfall and geological, and finally obtained the relation of the particle diameter and the formation of debris flow. The impact of earthquake on the terrain conditions mainly included two aspects: the destruction of the slope vegetation and blocking channel to change longitudinal ratio. Huangdongzi gully and Wenjia gully are similar in terms of terrain, and are conducive to the formation of debris flow. Both Qingping town of Mianzhu City and Gaochuan village of An county are in heavy rain area, and rainfall scale in Huangdongzi gully is greater than that in Wenjia gully. The water source and water dynamic condition of Huangdongzi gully are more favorable for the formation of the large scale debris flow disaster. The landslide accumulation in Huangdongzi gully is mainly based on the large grain size, and Wenjia gully is mainly based on the small grain size. Thus, debris flow development level and scale in Huangdongzi gully is smaller than that in Wenjia gully. The results showed that particle size played an important role in the formation of debris flow, more content of coarse particle (>24cm) was not conducive to the formation of debris flow, but more fine particle (<5cm) was benefit to the formation of debris flow. Huangdongzi gully still had a lot of landslide clastic accumulation which could develop to debris flow, thus we should be vigilant in heavy rain season.

Key words: Huangdongzi gully, debris flow, particle, diameter

中图分类号: 

  • P642.23
[1] SHIEH C L, CHEN Y S, TSAI Y J, et al. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China[J]. International Journal of Sediment Research, 2009, 24(2): 177-188.
[2] 杜 野. 大光包巨型滑坡"滑带"岩体碎裂化研究[D]. 成都: 成都理工大学硕士学位论文, 2013: 1-5. [DU Y. Study on the "slip band" rock mass disintegration of Daguangbao giant landslide[D]. Chengdu: Master Dissertation of Chengdu University of Technology, 2013: 1-5.]
[3] 余 斌, 马 煜, 吴雨夫, 等. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836. [YU B, MA Y, WU Y F, et al. Investigation of severe debris flow hazards in Wenjia Gully of Sichuan Province after the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6): 827-836.]
[4] 李世贵. 汶川5.12地震诱发大光包巨型滑坡形成机理与运动特征研究[D]. 成都: 成都理工大学硕士学位论文, 2010: 1-10. [LI S G. Study of the formation mechanism and dynamic characteristics of Daguangbao massive landslide induced by 5.12 Wenchuan Earthquake[D]. Chengdu: Master Dissertation of Chengdu University of Technology, 2010: 1-10.]
[5] 余 斌. 根据泥石流沉积物计算泥石流容重的方法研究[J]. 沉积学报, 2008, 26(5): 789-796. [YU B. Research on the calculating density by the deposit of debris flows[J]. Acta Sedimentologica Sinica, 2008, 26(5): 789-796.]
[6] 吴积善, 王成华, 程尊兰. 中国山地灾害防治工程[M]. 成都: 四川科学技术出版社, 1997: 95-110. [WU J S, WANG C H, CHENG Z L. Mountain Hazard Control Engineering in China[M]. Chengdu: Sichuan Science & Technology Press, 1997: 95-110.]
[7] KRAMER H. Sand mixtures and sand movement in fluvial model[J]. Transactions of the American Society of Civil Engineers, 1935, 100(1): 798-838.
[8] 韩 林, 余 斌, 鲁 科, 等. 泥石流暴发频率与其形成区块石粒径的关系[J]. 长江流域资源与环境, 2011, 20(9): 1149-1156. [HAN L, YU B, LU K. Relationship of frequency of debris flows and the particle size in the channel[J]. Resources and Environment in the Yangtze Basin, 2011, 20(9): 1149-1156.]
[9] 许 强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010, 18(5): 596-608. [XU Q. The 13 August 2010 catastrophic debris flows in Sichuan Province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596-608.]
[10] 许 强, 裴向军, 黄润秋, 等. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009: 381-406. [XU Q, PEI X J, HUANG R Q, et al. Large-Scale Landslides Induced by the Wenchuan Earthquake[M]. Beijing: Science Press, 2009: 381-406.]
[1] 李彦稷, 颜春达, 胡凯衡, 魏丽. 典型暴雨泥石流堆积扇危害范围演变规律[J]. 长江流域资源与环境, 2017, 26(05): 789-796.
[2] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[3] 是怡芸, 赵月, 查燕, 张银龙. 南京市植物叶面颗粒物的黑碳含量及时空分布特征[J]. 长江流域资源与环境, 2016, 25(12): 1886-1893.
[4] 王彬俨, 严冬春, 文安邦, 陈佳村. 三峡水库干流消落带沉积泥沙粒径特征及其物源意义[J]. 长江流域资源与环境, 2016, 25(09): 1421-1429.
[5] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566.
[6] 杨伟, 张琪, 李朝霞, 张利超, 蔡崇法. 几种典型红壤模拟降雨条件下的泥沙特征研究[J]. 长江流域资源与环境, 2016, 25(03): 439-444.
[7] 黄海, 刘建康, 石胜伟. 大渡河上游八步里沟泥石流防治中的资源综合利用研究[J]. 长江流域资源与环境, 2015, 24(12): 2159-2165.
[8] 向灵芝, 李泳, 陈洪凯, 苏凤环, 黄晓. 基于流域演化的泥石流敏感性分析[J]. 长江流域资源与环境, 2015, 24(11): 1984-1992.
[9] 黄英, 丁明涛, 庙成, 王骏, 周鹏. 云南蒋家沟泥石流运动特征及其发展趋势[J]. 长江流域资源与环境, 2015, 24(08): 1434-1442.
[10] 庄建琦, 崔鹏. 基于BP神经网络泥石流沟发育阶段的判定[J]. 长江流域资源与环境, 2009, 18(9): 849-.
[11] 韩用顺, 崔 鹏, 王道杰, 于红波, 杨命青, 李朝奎. 泥石流滩地农业资源化开发与利用——以蒋家沟为例[J]. 长江流域资源与环境, 2009, 18(8): 753-.
[12] 刘腊美 龙天渝 李崇明. 三峡水库上游流域非点源颗粒态磷污染负荷研究[J]. 长江流域资源与环境, 2009, 18(4): 320-.
[13] 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598-598.
[14] 张金山,谢 洪,. 岷江上游泥石流堵河可能性的经验公式判别[J]. 长江流域资源与环境, 2008, 17(4): 651-651.
[15] 杨书申. 北京、上海两地2004和2005年大气污染特征对比分析[J]. 长江流域资源与环境, 2008, 17(2): 323-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[2] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[3] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[4] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[5] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[6] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .
[7] 吴建楠, 姚士谋, 曹有挥, 王成新. 长江三角洲城市群城乡统筹发展的空间差别化研究[J]. 长江流域资源与环境, 2010, 19(z1): 21 .
[8] 师长兴. 长江上游输沙模数分布图的制作及其空间分异特征初步分析[J]. 长江流域资源与环境, 2010, 19(11): 1322 .
[9] 伍学进, 曾菊新. 试论宜居性城市绿地的规划与建设[J]. 长江流域资源与环境, 2011, 20(1): 28 .
[10] 施晓晖|徐祥德. 三峡库区来水流量与长江流域上游前期降水的关系研究[J]. 长江流域资源与环境, 2011, 20(09): 1062 .