长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 567-572.doi: 10.11870/cjlyzyyhj201604005

• 自然资源 • 上一篇    下一篇

上海城区地面沉降及其对地下水采灌量的响应

张建伟1,2,4, 胡克2, 岳玮3, 刘宝林2, 王建2, 高擎4   

  1. 1. 青岛大学环境科学系, 山东 青岛 266071;
    2. 中国地质大学(北京)海洋学院, 北京 100083;
    3. 山东省高密市环境保护局, 山东 高密 261500;
    4. 青岛地质工程勘察院, 山东 青岛 266100
  • 收稿日期:2015-07-09 修回日期:2015-09-15 出版日期:2016-04-20
  • 作者简介:张建伟(1980~),男,博士后,主要研究方向为海岸带地质、环境地质等.E-mail:dragonzjw@126.com
  • 基金资助:
    国土资源部公益性行业科研专项(201011019-05);国家自然科学基金(41202175)

LAND SUBSIDENCE IN SHANGHAI CITY AND ITS RESPONSE TO GROUNDWATER EXPLOITATION AND REINJECTION

ZHANG Jian-wei1,2,4, HU Ke2, YUE Wei3, LIU Bao-lin2, WANG Jian2, GAO Qing4   

  1. 1. Department of Environmental Sciences, Qingdao University, Qingdao 266071, China;
    2. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China;
    3. Environmental Protection Bureau of Gaomi City, Shandong Province, Gaomi 261500, China;
    4. Geo-Engineering Investigation Institute of Qingdao, Qingdao 266100, China
  • Received:2015-07-09 Revised:2015-09-15 Online:2016-04-20
  • Supported by:
    Special Fund for Scientific Research in the Public Interest of Ministry of land and resources (201011019-05); National Natural Science Foundation of China (41202175)

摘要: 上海城区地面沉降主要是由超采地下水、松散沉积地层压实等因素共同作用导致的,并引发多种次生灾害。F4分层标监测数据指示的地面沉降情况,显示上海城区地面沉降表现为总体具有非线性变化的规律,特别是1980年代以来,表现出垂向逐渐增大的特点,在空间上也不断扩展,直至2001年才始有缓和的趋势。在不同时段,随地下水开采量及开采层次的变化,上海城区地面沉降表现出不同的特征。结合1990~2009年20年内第四含水层地下水采灌量数据,得出地面沉降对地下水采灌量的响应关系为:地下水开采量增加,地层沉降量增大;地下水开采量减少,地层沉降量减小,但地面沉降相对于地下水开采具有滞后性;随着逐年的回灌,地层沉降量减小,且地下水回灌效果与回灌层位有直接关系。

关键词: 地面沉降, 分层标, 地下水, 采灌量, 响应关系

Abstract: Land subsidence in the Shanghai City is mainly caused by the over exploitation of groundwater and loose strata compaction. Land subsidence has led to many secondary disasters. The monitoring data of F4 layerwise mark shows that land subsidence in the Shanghai City generally presented nonlinear variation. Especially since the 1980s, the data showed gradual vertical increases and constant spatial expansion. This change was slowed down until the 2001. In different periods, with the changes of groundwater exploitation and mining level, land subsidence exhibited different characteristics. The 20 years (1990-2009) fourth aquifer data showed the response of land subsidence to groundwater exploitation and reinjection: the land subsidence increased with intensified groundwater exploitation, and reduced with decreased groundwater exploitation, but the land subsidence relative to the groundwater exploitation lagged behind. The land subsidence amount reduced with the increase of the reinjection, and the effect of the groundwater recharge had a direct relationship with the recharged aquifer.

Key words: the land subsidence, layerwise mark, groundwater, exploitation and reinjection, response relationship

中图分类号: 

  • P641.69
[1] 解晓南, 许朋柱, 秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 127-131. [XIE X N, XU P Z, QIN B Q. Analysis on problems and countermeasures of land surface subsidence in Tailake Basin[J]. Resources and Environment in the Yangtze Basin, 2005, 14(1): 127-131.]
[2] 张阿根, 魏子新. 中国地面沉降[M]. 上海: 上海科学技术出版社, 2005. [ZHANG A G, WEI Z X. Chinese Land Subsidence[M]. Shanghai: Shanghai Science and Technology Press, 2005.]
[3] ORTEGA-GUERRERO A, RUDOLPH D L, CHERRY J A. Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling[J]. Water Resources Research, 1999, 35(11): 3327-3341.
[4] GAMBOLATI G, TEATINI P, TOMASI L, et al. Coastline regression of the Romagna region, Italy, due to sea level rise and natural and anthropogenic land subsidence[J]. Water Resources Research, 1999, 35(1): 163-184.
[5] 郑铣鑫, 武强, 侯艳声, 等. 城市地面沉降研究进展及其发展趋势[J]. 地质论评, 2002, 48(6): 612-618. [ZHENG X X, WU Q, HOU Y S, et al. Advances and trends in research on urban land subsidence[J]. Geological Review, 2002, 48(6): 612-618.]
[6] 严礼川. 我国城市地面沉降概况[J]. 上海地质, 1992(1): 40-48. [YAN L C. Survey of the city land subsidence in China[J]. Shanghai Geology, 1992(1): 40-48.]
[7] 甘德福, 潘厚耀. 试论上海地面沉降的研究方向[J]. 中国地质, 1989(11): 15-17. [GAN D F, PAN H Y. Research on land subsidence in Shanghai[J]. Geology in China, 1989(11): 15-17. ]
[8] TEATINI P, FERRONATO M, GAMBOLATI G, et al. A century of land subsidence in Ravenna, Italy[J]. Environmental Geology, 2005, 47(6): 831-846.
[9] 薛禹群, 吴吉春, 张云, 等. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学 D辑: 地球科学, 2008, 38(4): 477-492. [XUE Y Q, WU J C, ZHANG Y, et al. Simulation of regional land subsidence in the southern Yangtze Delta[J]. Science in China Series D: Earth Sciences, 2008, 51(6): 808-825.]
[10] 邱金波, 李晓. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社, 2007. [QIU J B, LI X. The Quaternary Strata and Sedimentary Environment of Shanghai City[M]. Shanghai: Shanghai Science and Technology Press, 2007.]
[11] 张云, 薛禹群, 李勤奋. 上海现阶段主要沉降层及其变形特征分析[J]. 水文地质工程地质, 2003(5): 6-11. [ZHANG Y, XUE Y Q, LI Q F. Current prominent subsidence layer and its deformation properties in Shanghai[J]. Hydrogeology & Engineering Geology, 2003(5): 6-11.]
[12] 叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147. [YE S J, XUE Y Q, ZHANG Y, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147.]
[13] 邱蓓莉, 徐长乐, 刘洋, 等. 全球气候变化背景下上海市风暴潮灾害情景下脆弱性评估[J]. 长江流域资源与环境, 2014, 23(S): 149-158. [QIU B L, XU C L, LIU Y, et al. Vulnerability assessment of the impact of sea level rise and storm surges on Shanghai[J]. Resources and Environment in the Yangtze Basin, 2014, 23(S): 149-158.]
[14] 叶淑君. 区域地面沉降模型的研究与应用[D]. 南京: 南京大学博士学位论文, 2004. [YE S J. Study on the regional land subsidence model and its application[D]. Nanjing: Doctor Dissertation of Nanjing University, 2004.]
[15] 张阿根, 魏子新. 上海地面沉降研究的过去、现在与未来[J]. 水文地质工程地质, 2002, 29(5): 72-75. [ZHANG A G, WEI Z X. Past, present and future research on land subsidence in Shanghai City[J]. Hydrogeology & Engineering Geology, 2002, 29(5): 72-75.]
[16] OSLEGER D, READ J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, U. S. A. [J]. Journal of Sedimentary Research, 1991, 61(7): 1225-1252.
[17] 唐立刚. 天津市地面沉降的GPS监测研究[D]. 天津: 天津大学硕士学位论文, 2005: 28-36. [TANG L G. Research of monitoring land subsidence by GPS surveying in Tianjin[D]. Tianjin: Master Dissertation of Tianjin University, 2005: 28-36.]
[18] 陈蓓蓓, 宫辉力, 李小娟, 等. 基于InSAR技术北京地区地面沉降监测与风险分析[J]. 地理与地理信息科学, 2011, 27(2): 16-20. [CHEN B B, GONG H L, LI X J, et al. Monitoring and risk analysis of land subsidence in Beijing based on interferometric synthetic aperture radar (InSAR) technique[J]. Geography and Geo-Information Science, 2011, 27(2): 16-20.]
[19] LIU H, JEZEK K C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods[J]. International Journal of Remote Sensing, 2004, 25(5): 937-958.
[20] RIGNOT E, RIVERA A, CASASSA G. Contribution of the Patagonia ice fields of South America to sea level rise[J]. Science, 2003, 302(5644): 434-437.
[21] 许烨霜, 马磊, 沈水龙. 上海市城市化进程引起的地面沉降因素分析[J]. 岩土力学, 2011, 32(S): 578-582. [XU Y S, MA L, SHEN S L. Influential factors on development of land subsidence with process of urbanization in Shanghai[J]. Rock and Soil Mechanics, 2011, 32(S): 578-582.]
[22] 龚士良. 上海地下水流场变化及对地面沉降发展的影响[J]. 水资源与水工程学报, 2009, 20(3): 1-6. [GONG S L. Change of groundwater seepage field and its influence on development of land subsidence in Shanghai[J]. Journal of Water Resources & Water Engineering, 2009, 20(3): 1-6.]
[23] 邓青军, 唐仲华, 吴琦, 等. 荆州市地下水动态特征及影响因素分析[J]. 长江流域资源与环境, 2014, 23(9): 1215-1221. [DENG Q J, TANG Z H, WU Q, et al. Characteristics of groundwater and its influencing factors in Jingzhou city[J]. Resources and Environment in the Yangtze Basin, 2014, 23(9): 1215-1221.]
[24] 薛禹群, 张云, 叶淑君, 等. 我国地面沉降若干问题研究[J]. 高校地质学报, 2006, 12(2): 153-160. [XUE Y Q, ZHANG Y, YE S J, et al. Research on the problems of land subsidence in China[J]. Geological Journal of China Universities, 2006, 12(2): 153-160.]
[25] SAHAGIAN D L, HOLLAND S M. Eustatic sea-level curve based on a stable frame of reference: preliminary results[J]. Geology, 1991, 19(12): 1209-1212.
[26] 曾昭华. 江汉平原东部地区地下水资源的开发利用与保护[J]. 长江流域资源与环境, 1996, 5(4): 375-378. [ZENG S H. The exploitation, utilization and protection of groundwater resource in the eastern area of Jianghan Plain[J]. Resources and Environment in the Yangtze Valley, 1996, 5(4): 375-378.]
[1] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[2] 张岩, 付昌昌, 毛磊, 龚绪龙, 李向全. 江苏盐城地区地下水水化学特征及形成机理[J]. 长江流域资源与环境, 2017, 26(04): 598-605.
[3] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[4] 龚继文, 李崇明, 程艳茹, 张韵, 赵丽. 基于GMS的山区三维地质模型及应用研究[J]. 长江流域资源与环境, 2016, 25(07): 1135-1141.
[5] 荆平 贾海峰. 流域地下水质评价的GIS与模型集成分析[J]. 长江流域资源与环境, 2009, 18(3): 248-253.
[6] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721-721.
[7] 孙爱荣,周爱国,梁合诚,鄂 建. 九江市地下水易污性评价——基于DPASTIC指标的模糊综合评价模型[J]. 长江流域资源与环境, 2007, 16(4): 499-499.
[8] 李俊云,李林立,谢世友,李廷勇,李元庆. 人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J]. 长江流域资源与环境, 2007, 16(4): 514-514.
[9] 刘英华,张世熔, 张素兰, 魏 甦, 肖鹏飞. 成都平原地下水硝酸盐含量空间变异研究[J]. 长江流域资源与环境, 2005, 14(1): 114-118.
[10] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈校辉,边文冀,赵 钦,严维辉,彭 刚. 长江江苏段鱼类种类组成和优势种研究[J]. 长江流域资源与环境, 2007, 16(5): 571 .
[2] 邵晓梅,王 静. 小城镇耕地集约利用评价方法比较研究 ——以浙江省慈溪市为例[J]. 长江流域资源与环境, 2008, 17(1): 93 .
[3] 魏 婷, 吴长年. 一种工业园区生态系统健康评价方法及其应用[J]. 长江流域资源与环境, 2007, 16(5): 680 .
[4] 陆应诚,王心源,高 超. 基于遥感技术的圩田时空特征分析——以皖东南及其相邻地域为例[J]. 长江流域资源与环境, 2006, 15(1): 61 -65 .
[5] 陶豫萍,吴 宁,罗 鹏,刘 兵. 森林对污染物(SO2-4)的过滤器效应研究[J]. 长江流域资源与环境, 2005, 14(5): 628 -632 .
[6] 胡明秀, 胡 辉, 王立兵. 武汉市工业“三废”污染状况计量模型研究[J]. 长江流域资源与环境, 2005, 14(4): 470 -474 .
[7] 刘 凯, 徐东坡, 张敏莹, 段金荣, 施炜纲. 崇明北滩鱼类群落生物多样性初探[J]. 长江流域资源与环境, 2005, 14(4): 418 -421 .
[8] 李阳兵,姜 丽,白晓永. 亚热带喀斯特石漠化土地退化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 195 -399 .
[9] 吴宜进. 近50年长江流域降水日数的演变趋势[J]. 长江流域资源与环境, 2008, 17(2): 217 .
[10] 段学军,陈 雯,许 刚,孙 伟,. 经济—生态导向的城市人口空间分布优化——以无锡市区为例[J]. 长江流域资源与环境, 2008, 17(5): 679 .