长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 664-670.doi: 10.11870/cjlyzyyhj201604017

• 自然灾害 • 上一篇    下一篇

近50 a江西省旱、涝变化趋势及驱动因素研究

郑太辉1,2, 陈晓安1,2, 杨洁1,2   

  1. 1. 江西省土壤侵蚀与防治重点实验室, 江西 南昌 330029;
    2. 江西省水土保持科学研究院, 江西 南昌 330029
  • 收稿日期:2015-08-03 修回日期:2015-09-30 出版日期:2016-04-20
  • 通讯作者: 杨洁 E-mail:zliyi@163.com
  • 作者简介:郑太辉(1985~),男,工程师,博士,主要开展旱涝急转对坡面径流的影响、土壤侵蚀与防治等方面的研究.E-mail:ztaihui@163.com
  • 基金资助:
    江西省优势科技创新团队建设计划项目(20152BCB24011)、江西省水利科技项目(KT201109、KT201419)、国家自然科学基金项目(41401312)、江西省星火计划项目(20132BBF61043)

STUDIES ON THE SHIFTING TRENDS IN DROUGHTS AND FLOODS OF JIANGXI PROVINCE IN RECENT FIFTY YEARS AND MAIN DRIVING FACTORS

ZHENG Tai-hui1,2, CHEN Xiao-an1,2, YANG Jie1,2   

  1. 1. Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China;
    2. Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China
  • Received:2015-08-03 Revised:2015-09-30 Online:2016-04-20
  • Supported by:
    Building Project of High-level Science and Technology Innovation Team in Jiangxi Province (20152BCB24011)、National Natural Science Foundation of China (41401312)、the Spark Plan of Jiangxi Province (20132BBF61043)

摘要: 基于江西省5个气象站(赣县、吉安、南城、南昌、景德镇)近50 a(1961~2010年)平均气温、最高、最低平均气温、相对湿度、风速、日照时数、降雨量等逐月平均资料,计算江西省干旱侦测指数(Reconnaissance drought index, RDI),分析旱情、涝情变化趋势。同时,运用多元回归法分析主要驱动因素。研究结果表明,1961~2010年江西省年及四个季节的降雨量、平均相对湿度与RDIst值均呈现极显著的正相关关系(p < 0.01),而日照时数则与RDIst值呈现极显著的负相关关系(p < 0.01)。降雨量对江西省旱、涝变化的贡献率最大,为42%~58%;其次是平均气温和相对湿度,分别为11%~19%和7%~19%;平均风速和日照时数对江西省旱、涝变化的贡献率较小。降雨量、相对湿度的增加,日照时数的减少共同导致了1961~2010年江西省年际尺度和春季RDIst值的增加,表明江西省总体从偏旱向偏涝转变。1961~2010年江西省夏季、秋季和冬季RDIst没有明显的增长或降低趋势。

关键词: 旱涝, 干旱侦测指数, Penman-Monteith, 驱动因素, 江西省

Abstract: Droughts and floods are the most severe disasters in China, featuring wide spread, high occurrence and tremendous economic damage. Based on the analysis of documentation and observation data, the inter-decadal changes of drought-and-flood in south China indicated that the yearly and inter-decadal changes of d-and-f disaster have been becoming more and more obvious corresponding to the process of global warming. Jiangxi province is located in the central area of southern red soil region. In recent decades, Jiangxi suffered from the harm of frequent droughts and floods. Moreover, Jiangxi is one of the provinces famous for its farming production. Therefore, frequent droughts and floods have resulted in enormous economic losses in this region. Hence, studies about the inter-annual variation of droughts and floods in Jiangxi province are helpful for the early warming of droughts and floods. In this study, the monthly mean meteorological data during 1961-2010 including monthly mean temperature, maximum temperature, minimum temperature, relative humidity, wind speed and sunshine data in five meteorological stations such as Ganxian, Ji'an, Nancheng, Nanchang and Jingdezhen in Jiangxi province were collected from China Meteorological Data Center (CMDC). Based on these data, reconnaissance drought index (RDI) was adopted and calculated and the changes of droughts and floods in Jiangxi in recent fifty years (1961~2010) were looked into with the help of the Mann-Kendall test. Moreover, main driving factors for such changes in droughts and floods have been investigated with the help of multiple regression analysis method. The results suggested that an increase break point of the inter-annual scale RDIst value of Jiangxi province occurred in 1969 years during 1961-2010, suggesting that the drought level increased but flood level declined during this period. It was indicated that an increase break point of the RDIst value in spring occurred in 1967 years, indicating that the drought level gradually increased but flood level gradually decreased in spring in Jiangxi province since 1967 years. It was suggested that an increase break point of the RDIst value in fall occurred in 1971 years, indicating that the drought level gradually increased but flood level gradually decreased in fall in Jiangxi province since 1971 years. No break points existed in the RDIst value of Jiangxi province in summer and winter during 1961-2010 as indicated by the Mann-Kendall test, which suggested that drought level or flood level in summer and winter during 1961-2010 showed no increasing or decreasing trends. The inter-annual scale or seasonal-time scale of RDI was significantly positive correlated with rainfall and relative humidity, but negative correlated with sunshine (p < 0.01). The contribution rates of rainfall to the changes in droughts and floods were highest, accounting for 42%~58%, followed by mean temperature and relative humidity accounting for 11%~19% and 7%~19%, respectively. The contribution rates of mean wind speed and sunshine to the changes in droughts and floods were small. Inter-annual scale and spring standardized RDI displayed an increasing trend during 1961~2010, caused by increases in rainfall and relative humidity and decrease in sunshine. However, summer, fall and winter standardized RDI showed no increasing or decreasing trends during 1961~2010.

Key words: Droughts and floods, Reconnaissance drought index, Penman-Monteith, Driving factors, Jiangxi Province

中图分类号: 

  • P429
[1] Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers[M]//SOLOMON S, QIN D, MANNING M, et al. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[2] 吴燕锋, 巴特尔·巴克, 李维, 等. 基于综合气象干旱指数的1961-2012年阿勒泰地区干旱时空演变特征[J]. 应用生态学报, 2015, 26(2): 512-520. [WU Y F, BAKE B, LI W, et al. Spatio-temporal variation of drought condition during 1961 to 2012 based on composite index of meteorological drought in Altay region, China[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 512-520.]
[3] LI Z X, FENG Q, LIU W, et al. Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961-2009[J]. Quaternary International, 2014, 336: 127-144.
[4] BONACCORSO B, CANCELLIERE A, ROSSI G. Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index[J]. Journal of Hydrology, 2015, 526: 136-150.
[5] SHAH R, BHARADIYA N, MANEKAR V. Drought index computation using standardized precipitation index (SPI) method for surat district, Gujarat[J]. Aquatic Procedia, 2015, 4: 1243-1249.
[6] YAMOAH C F, WALTERS D T, SHAPIRO C A, et al. Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize[J]. Agriculture, Ecosystems & Environment, 2000, 80(1/2): 113-120.
[7] 王建兵, 王素萍, 汪治桂. 1971~2010年若尔盖湿地潜在蒸散量及地表湿润度的变化趋势[J]. 地理科学, 2015, 35(2): 245-250. [WANG J B, WANG S P, WANG Z G. The variety characters of potential evapotranspiration and soil surface humidity index in the Zoige Wetland in 1971-2010[J]. Scientia Geographica Sinica, 2015, 35(2): 245-250.]
[8] 袁文凭, 周广胜. 标准化降水指标与Z指数在我国应用的对比分析[J]. 植物生态学报, 2004, 28(4): 523-529. [YUAN W P, ZHOU G S. Comparison between standardized precipitation index and Z-index in China[J]. Acta Phytoecologica Sinica, 2004, 28(4): 523-529.]
[9] ZARCH M A A, SIVAKUMAR B, SHARMA A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)[J]. Journal of Hydrology, 2015, 526: 183-195.
[10] TSAKIRIS G, VANGELIS H. Establishing a drought index incorporating evapotranspiration[J]. European Water, 2005, 9-10: 3-11.
[11] ALLEN R G, PEREIRA L S, RAES D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56[M]. Rome: FAO-Food and Agriculture Organization of the United Nations, 1998.
[12] ALLEN R G, WALTER I A, ELLIOTT R, et al. The ASCE Standardized Reference Evapotranspiration Equation[M]. Reston, VA: American Society of Civil Engineers, 2005.
[13] 侯光良, 李继由, 张谊光. 中国农业气候资源[M]. 北京: 中国人民大学出版社, 1993.
[14] MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259.
[15] KENDALL M G. Rank Correlation Methods[M]. London, UK: Griffin, 1975.
[16] HAMED K H. Exact distribution of the Mann-Kendall trend test statistic for persistent data[J]. Journal of Hydrology, 2009, 365(1/2): 86-94.
[17] PRYOR S C, LEDOLTER J. Addendum to "Wind speed trends over the contiguous United States"[J]. Journal of Geophysical Research, 2010, 115(D10): D10103.
[1] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619-2628.
[2] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[3] 夏浩, 苑韶峰, 杨丽霞. 浙江县域土地经济效益空间格局演变及驱动因素研究[J]. 长江流域资源与环境, 2017, 26(03): 341-349.
[4] 雷玉桃, 黄丽萍, 张恒. 中国工业用水效率的动态演进及驱动因素研究[J]. 长江流域资源与环境, 2017, 26(02): 159-170.
[5] 李话语, 徐磊, 李帆, 冰河, 师永强. 南方丘陵地区河谷城市用地时空演变与驱动分析——以上饶市城区为例[J]. 长江流域资源与环境, 2016, 25(11): 1720-1728.
[6] 张振东, 张延飞, 唐鑫. 江西省生态文明建设的系统仿真与优化[J]. 长江流域资源与环境, 2016, 25(09): 1403-1411.
[7] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
[8] 闪丽洁, 张利平, 陈心池, 杨卫. 长江中下游流域旱涝急转时空演变特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2100-2107.
[9] 吉中会, 单海燕. 长江中下游地区旱涝急转的阈值诊断及危险性评估[J]. 长江流域资源与环境, 2015, 24(10): 1793-1798.
[10] 王怀清, 殷剑敏, 孔萍, 占明锦. 鄱阳湖流域千年旱涝变化特点及R/S分析[J]. 长江流域资源与环境, 2015, 24(07): 1214-1220.
[11] 陈欢, 陈雯, 曹有挥, 吴威. 江苏苏中3市的沿江岸线资源开发利用变化及驱动因素[J]. 长江流域资源与环境, 2015, 24(05): 711-718.
[12] 花 明, 谢青霞. 从“低碳经济”谈江西发展核电的必要性和可行性[J]. 长江流域资源与环境, 2010, 19(01): 13-.
[13] 苏筠, 刘南江, 林晓梅,. 社会减灾能力信任及水灾风险感知的区域对比——基于江西九江和宜春公众的调查[J]. 长江流域资源与环境, 2009, 18(1): 92-.
[14] 陈 静,桂发亮,傅 春. 缓解西北地区缺水问题的新途径[J]. 长江流域资源与环境, 2008, 17(3): 410-410.
[15] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330 -334 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[6] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[7] 徐天宝, 彭静, 李翀. 葛洲坝水利工程对长江中游生态水文特征的影响[J]. 长江流域资源与环境, 2007, 16(1): 72 -75 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 王红娟,姜加虎,黄 群. 东洞庭湖湿地景观变化研究[J]. 长江流域资源与环境, 2007, 16(6): 732 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .