长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 68-77.doi: 10.11870/cjlyzyyhj2016Z1009

• 生态环境 • 上一篇    下一篇

城市土地利用对居民通勤碳排放的影响研究

戴刘冬1, 周锐1,2, 张凤娥1,2, 王新军1,2   

  1. 1. 复旦大学环境科学与工程系, 上海 200433;
    2. 复旦大学城市规划与发展研究中心, 上海 200433
  • 收稿日期:2015-03-22 修回日期:2015-05-10 出版日期:2016-11-26
  • 通讯作者: 王新军,E-mail:fudanplanning@vip.163.com E-mail:fudanplanning@vip.163.com
  • 作者简介:戴刘冬(1991~),女,硕士研究生,主要研究方向为城市规划与环境设计、区域规划.E-mail:dailiudong@aliyun.com
  • 基金资助:
    国家自然科学基金资助项目“城市土地利用对交通网络行程时间可靠性的影响机制研究”(51378127)

EFFECTS OF URBAN LAND-USE ON RESIDENTS' COMMUTING CO2 EMISSION

DAI Liu-dong1, ZHOU Rui1,2, ZHANG Feng-e1,2, WANG Xin-jun1,2   

  1. 1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
    2. Research Center for Urban Planning & Development of Fudan University, Shanghai 200433, China
  • Received:2015-03-22 Revised:2015-05-10 Online:2016-11-26
  • Supported by:
    National Natural Science Foundation of China "Influencing Mechanism Research of Urban Land Use on Transport Network Reliability"(51378127)

摘要: 以南阳市为例,基于3 746组实地调查数据,采用GIS、多元线性回归和结构方程模型,系统分析了我国中部城市居民通勤碳排放的空间分异特征,重点研究了居住地和工作地中小尺度土地利用因子对通勤碳排放的影响机制。研究发现:在内生变量中,通勤距离和通勤方式均是影响居民通勤碳排放的显著因素;在外生变量中,工作地的道路密度和商业用地占比、居住地的人口密度与通勤碳排放呈显著正相关,公交线路数量、居住地的土地利用混合度、工作地的居住用地和工业用地占比与通勤碳排放呈显著负相关。研究成果旨在为研究区城市土地利用优化调控和低碳规划提供决策依据,也为其他同类地区城市土地利用低碳规划与可持续发展提供借鉴。

关键词: 城市土地利用, 通勤碳排放, GIS, 结构方程模型

Abstract: With the aim to provide a basis on which decisions are made with regard to the optimization and low-carbon planning of urban land use in the researched city and offer some insights into low-carbon planning and sustainable development in similar cities, this study investigates the influencing mechanism of land-use factors at medium-and-small scale in the working and living areas on residents' commuting CO2 emission by means of GIS and statistical methods such as multiple linear regression and structural equation model, with an instance of Nanyang City, Henan Province at the level of individual residents on the basis of 3, 746 sets of data acquired through field survey. The study discovers that among endogenous variables commuting distance and commuting choices are the major factors that have an impact on residents' commuting CO2 emission, while among the exogenous variables, the road density in the working areas, the proportion of commercial land and the population density in the living areas have significant positive correlation with commuting CO2 emission, whereas the number of bus routes, the degree of mixed land use in the living areas, the ratio of residential land and industrial land in the working areas have significant negative correlation with commuting CO2 emission.

Key words: urban land-use, commuting CO2 emission, GIS, structural equation model

中图分类号: 

  • TU984
[1] IPCC. Climate Change 2013:the Physical Science Basis[R]. Cambridge:Cambridge University Press, 2014.
[2] LIU R F, GUAN C Q. Mode biases of urban transportation policies in China and their implications[J]. Journal of Urban Planning and Development, 2005, 131(2):58-70.
[3] 童抗抗, 马克明. 居住-就业距离对交通碳排放的影响[J]. 生态学报, 2012, 32(10):2975-2984.[TONG K K, MA K M. Significant impact of job-housing distance on carbon emissions from transport:a scenario analysis[J]. Acta Ecologica Sinica, 2012, 32(10):2975-2984.]
[4] ZAHABI S A H, MIRANDA-MORENO L, PATTERSON Z, et al. Transportation greenhouse gas emissions and its relationship with urban form, transit accessibility and emerging green technologies:a Montreal case study[J]. Procedia-Social and Behavioral Sciences, 2012, 54:966-978.
[5] FRANK L D, STONE JR B, BACHMAN W. Linking land use with household vehicle emissions in the central puget sound:methodological framework and findings[J]. Transportation Research Part D:Transport and Environment, 2000, 5(3):173-196.
[6] KENWORTHY J. Transport energy use and greenhouse gases in urban passenger transport systems:a study of 84 global cities[C]//Presented to the international Third Conference of the Regional Government Network for Sustainable Development. Fremantle, Western Australia:Notre Dame University, 2003.
[7] WAYGOOD E O D, SUN Y L, SUSILO Y O. Transportation carbon dioxide emissions by built environment and family lifecycle:case study of the Osaka metropolitan area[J]. Transportation Research Part D:Transport and Environment, 2014, 31:176-188.
[8] 柴彦威, 肖作鹏, 刘志林. 居民家庭日常出行碳排放的发生机制与调控策略-以北京市为例[J]. 地理研究, 2012, 31(2):334-344.[CHAI Y W, XIAO Z P, LIU Z L. Low-carbon optimization strategies based on CO2 emission mechanism of household daily travels:a case study of Beijing[J]. Geographical Research, 2012, 31(2):334-344.]
[9] 黄晓燕, 李沛权, 曹小曙. 广州社区居民通勤碳排放特征及其影响机理[J]. 城市环境与城市生态, 2014, 27(5):32-38.[HUANG X Y, LI P Q, CAO X S. Characteristics and mechanism of CO2 emissions from urban commuting in Guangzhou[J]. Urban Environment & Urban Ecology, 2014, 27(5):32-38.]
[10] 黄经南, 高浩武, 韩笋生. 道路交通设施便利度对家庭日常交通出行碳排放的影响——以武汉市为例[J]. 国际城市规划, 2015, 30(3):97-105.[HUANG J N, GAO H W, HAN S S. The effect of traffic facilities accessibility on household commuting caused carbon emission:a case study of Wuhan City, China[J]. Urban Planning International, 2015, 30(3):97-105.]
[11] 马静, 柴彦威, 刘志林. 基于居民出行行为的北京市交通碳排放影响机理[J]. 地理学报, 2011, 66(8):1023-1032.[MA J, CHAI Y W, LIU Z L. The mechanism of CO2 emissions from urban transport based on individuals' travel behavior in Beijing[J]. Acta Geographica Sinica, 2011, 66(8):1023-1032.]
[12] 赵敏, 张卫国, 俞立中. 上海市居民出行方式与城市交通CO2排放及减排对策[J]. 环境科学研究, 2009, 22(6):747-752.[ZHAO M, ZHANG W G, YU L Z. Resident travel modes and CO2 emissions by traffic in Shanghai City[J]. Research of Environmental Sciences, 2009, 22(6):747-752.]
[13] 杨上广, 王春兰, 刘淋. 上海家庭出行碳排放基本特征、空间模式及影响因素研究[J]. 中国人口·资源与环境, 2014, 24(6):148-153.[YANG S G, WANG C L, LIU L. Study on basic characteristics, spatial pattern and influence factors of Shanghai family commuting carbon emission[J]. China Population, Resources and Environment, 2014, 24(6):148-153.]
[14] 朱燕妮, 陈红敏, 陆淼菁. 上海市通勤高碳排放群体识别与特征分析[J]. 资源科学, 2014, 36(7):1469-1477.[ZHU Y N, CHEN H M, LU M J. Identification and analysis of high-emission commuter groups in Shanghai[J]. Resources Science, 2014, 36(7):1469-1477.]
[15] HORNER M W. Extensions to the concept of excess commuting[J]. Environment and Planning A, 2002, 34(3):543-566.
[16] FROST M, LINNEKER B, SPENCE N. Excess or wasteful commuting in a selection of British cities[J]. Transportation Research Part A:Policy and Practice, 1998, 32(7):529-538.
[17] 石天戈, 张小雷, 杜宏茹, 等. 乌鲁木齐市居民出行行为的空间特征和碳排放分析[J]. 地理科学进展, 2013, 32(6):897-905.[SHI T G, ZHANG X L, DU H R, et al. Spatial characteristics of residents' outings and carbon emissions in Urumqi City[J]. Progress in Geography, 2013, 32(6):897-905.]
[18] 倪捷. 中国大众交通变革与应对气候变化和节能减排的责任[R]. 绿源集团, 2009.[NI J. Changes in public transport in China and responsibilities in the face of climate change and energy conservation and emission reduction[R]. Lvyuan Group, 2009.]
[19] EUROPEAN C. TREMOVE Transport Model[M]. Brussels:EC-DG Environment, 2006.
[20] 许学强, 周一星, 宁越敏. 城市地理学[M]. 北京:高等教育出版社, 2004:219-221.[XU X Q, ZHOU Y X, NING Y M. Urban Geography[M]. Beijing:Higher Education Press, 2004:219-221.]
[21] 吴明隆. 结构方程模型-AMOS的操作与应用[M]. 重庆:重庆大学出版社, 2014:1-3.[WU M L. Structural Equation Model:Operations and Applications of AMOS[M]. Chongqing:Chongqing University Press, 2014:1-3.]
[22] 侯杰泰, 温忠麟, 成子娟. 结构方程模型及其应用[M]. 北京:教育科学出版社, 2004.[HAU K T, WEN Z L, CHENG Z J. Structural Equation Model and Its Applications[M]. Beijing:Educational Science Publishing House, 2004.]
[23] 温忠麟, 侯杰泰, 马什赫伯特. 结构方程模型检验:拟合指数与卡方准则[J]. 心理学报, 2004, 36(2):186-194.[WEN Z L, HAU K T, MARSH H W. Structural equation model testing:cutoff criteria for goodness of fit indices and chi-square test[J]. Acta Psychologica Sinica, 2004, 36(2):186-194.]
[24] CAO X Y, MOKHTARIAN P L, HANDY S L. Examining the impacts of residential self-selection on travel behaviour:a focus on empirical findings[J]. Transport Reviews, 2009, 29(3):359-395.
[1] 王宇环, 靳 诚, 安鸿波, 刘 月. 基于低碳出行方式的南京市本地居民景点可达性研究[J]. 长江流域资源与环境, 2018, 27(11): 2443-2452.
[2] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[3] 刘钢, 宋亚倩, 樊力硕, 汪志强. 基于有序Logistic回归的水库移民住房感知实证研究[J]. 长江流域资源与环境, 2017, 26(04): 519-529.
[4] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[5] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
[6] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[7] 刘金珍, 樊皓, 阮娅. 乌东德水库坝前段消落带生态类型划分及生态修复模式初探[J]. 长江流域资源与环境, 2016, 25(11): 1767-1773.
[8] 戴德艺, 饶映雪, 刘殿锋, 刘成武. 1989~2015年武汉市城市格局时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1545-1554.
[9] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
[10] 马勇, 童昀. 水利旅游资源空间结构特征及自驾车可达性研究——以长江中游城市群国家水利风景区为例[J]. 长江流域资源与环境, 2016, 25(08): 1167-1175.
[11] 张勤才, 马友华, 杨生华, 李小刚, 王静. 基于GIS的芜湖市耕地地力评价[J]. 长江流域资源与环境, 2016, 25(02): 226-233.
[12] 施媛媛, 李仁东, 徐兴建, 邱娟, 刘可群, 常变蓉, 易凤佳. 1980年来湖北省钉螺分布区域及其数量的消长分析[J]. 长江流域资源与环境, 2015, 24(10): 1744-1750.
[13] 蒋金亮, 周亮, 吴文佳, 孙东琪, 徐建刚. 长江沿岸中心城市土地扩张时空演化特征——以宁汉渝3市为例[J]. 长江流域资源与环境, 2015, 24(09): 1528-1536.
[14] 姚飞, 陈龙乾, 张宇, 吴沛瑶, 张红梅, 王秉义. 巢湖水陆交错带生态服务价值梯度分析[J]. 长江流域资源与环境, 2015, 24(09): 1568-1576.
[15] 张孝宇, 赖宗裕, 张安录. 基于地块尺度的耕地非农化驱动力空间异质性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(06): 994-1002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[2] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[3] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[4] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[5] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[6] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .
[7] 吴建楠, 姚士谋, 曹有挥, 王成新. 长江三角洲城市群城乡统筹发展的空间差别化研究[J]. 长江流域资源与环境, 2010, 19(z1): 21 .
[8] 师长兴. 长江上游输沙模数分布图的制作及其空间分异特征初步分析[J]. 长江流域资源与环境, 2010, 19(11): 1322 .
[9] 伍学进, 曾菊新. 试论宜居性城市绿地的规划与建设[J]. 长江流域资源与环境, 2011, 20(1): 28 .
[10] 施晓晖|徐祥德. 三峡库区来水流量与长江流域上游前期降水的关系研究[J]. 长江流域资源与环境, 2011, 20(09): 1062 .