长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 289-296.doi: 10.11870/cjlyzyyhj201702015

• 生态环境 • 上一篇    下一篇

鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示

李冰1,2, 杨桂山1, 万荣荣1, 刘宝贵1,2, 戴雪1,2, 许晨1,2   

  1. 1. 中国科学院南京地理与湖泊研究所流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2016-05-30 修回日期:2016-07-26 出版日期:2017-02-20
  • 通讯作者: 杨桂山,E-mail:gsyang@niglas.ac.cn E-mail:gsyang@niglas.ac.cn
  • 作者简介:李冰(1991~),男,博士研究生,主要研究方向为人文地理.E-mail:libing9133@126.com
  • 基金资助:
    国家重点基础研究发展计划项目(2012CB417006);国家自然科学基金项目(41271500、41571107)

TEMPORAL VARIABILITY OF WATER QUALITY IN POYANG LAKE OUTLET AND THE ASSOCIATED WATER LEVEL FLUCTUATIONS: A WATER QUALITY SAMPLING REVELATION

LI Bing1,2, YANG Gui-shan1, WAN Rong-rong1, LIU Bao-gui1,2, DAI Xue1,2, XU Chen1,2   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-05-30 Revised:2016-07-26 Online:2017-02-20
  • Supported by:
    State Key Development Program for Basic Research of China (2012CB417006);National Natural Science Foundation of China (41271500、41571107)

摘要: 通过对鄱阳湖湖口2004~2014年以周为单位的水质指标,包括溶解氧(DO),氨氮(NH4+-N)和高锰酸盐指数(CODMn)的变化特征及其与水位响应关系进行分析,并对合理的监测频率进行了探讨。结果表明:(1)就DO,NH4+-N和CODMn而言,鄱阳湖出湖水质在2004~2014年没有显著恶化的趋势,然而在年内呈现明显的周期性变化,其浓度与湖泊水位波动有较显著的负相关性(p<0.01),相关系数分别达到-0.63,-0.67和-0.36;(2)考虑水质指标在湖相状态与河相状态存在显著的差异(p<0.01),概率密度分布曲线进一步表明,在鄱阳湖呈湖相时,湖口NH4+-N浓度小于0.25 mg/L的概率为93%,而在河相时仅为32.8%。DO与CODMn浓度在河湖相的特征与NH4+-N相似。因此,在湖相状态下,鄱阳湖出流水质良好的概率更大,而高水位下的稀释作用可能是影响湖泊年内变化的主要控制因素;(3)时间序列分析表明DO,NH4+-N和CODMn存在明显的自相关性,1~2月一次的监测频率基本能够准确的描述NH4+-N和DO的动态变化特征,而CODMn仍需要1~2周一次的监测,从而避免过多的损失动态信息。能够为将来更深入的研究湖泊水情与水质定量关系提供基础和思路,从而为湖泊水环境管理和调控提供对策和建议。

关键词: 鄱阳湖出流, 水质, 变化趋势, 水情响应, 采样频率

Abstract: A combination of weekly concentrations of three water quality parameters including dissolved oxygen (DO), ammonia (NH4+-N) and chemical oxygen demand (CODMn) for water samples in Poyang Lake outlet during 2004-2014, and corresponding hydrological data were analyzed. Results indicated that DO, NH4+-N and CODMn did not demonstrate significant inter-annual trends, while remarkable seasonal variations were observed, and notable negative correlation was found between DO, NH4+-N and CODMn and water level fluctuation, with Pearson coefficients of -0.63, -0.67 and -0.36, respectively. The dataset was further split into lake phase and river phase based on characteristic water level of 14 m. Probability density analysis revealed that in lake phase, there was 93% probability that the NH4+-N concentration would be lower than 0.25 mg/L, while for river phase, the probability went down to 32.8%. Similar results were also obtained for CODMn and DO. In general, the water quality of Poyang Lake outlet was more prone to be better in the lake phase than that in the river phase, further indicating that the dilution effect of high water level was decisive for the variability of water quality in Poyang Lake outlet. Finally, a quite strong autocorrelation of DO and NH4+-N was found and the water quality sampling for DO, NH4+-N and CODMn must be different. DO and NH4+-N can be monitored monthly or bimonthly, while CODMn must be sampled with more frequency, e.g. weekly or biweekly.

Key words: Poyang Lake outlet, water quality, variation trend, water level fluctuations, sampling frequency

中图分类号: 

  • P95
[1] EPA. Surface water quality standards[R]. Washington, DC:US EPA, 2013.
[2] HOUCK O A. Clean Water Act TMDL Program:Law, Policy, and Implementation[M]. Washington, DC:Environmental Law Institute, 1999.
[3] BORSUK M E, STOW C A, RECKHOW K H. Predicting the frequency of water quality standard violations:a probabilistic approach for TMDL development[J]. Environmental Science & Technology, 2002, 36(10):2109-2115.
[4] FAKHRAEI H, DRISCOLL C T, SELVENDIRAN P, et al. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York[J]. Atmospheric Environment, 2014, 95:277-287.
[5] RUŽDJAK A M, RUŽDJAK D. Evaluation of river water quality variations using multivariate statistical techniques[J]. Environmental Monitoring and Assessment, 2015, 187(4):215.
[6] SKARBØVIK E, STÅLNACKE P, BOGEN J, et al. Impact of sampling frequency on mean concentrations and estimated loads of suspended sediment in a Norwegian river:implications for water management[J]. Science of the Total Environment, 2012, 433:462-471.
[7] LU X X, LI S Y, HE M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang basin:an example of the Longchuanjiang River, China[J]. Journal of Hydrology, 2011, 405(3/4):344-351.
[8] ALEWELL C, LISCHEID G, HELL U, et al. High temporal resolution of ion fluxes in semi-natural ecosystems-gain of information or waste of resources[J]. Biogeochemistry, 2004, 69(1):19-35.
[9] JONES A S, HORSBURGH J S, MESNER N O, et al. Influence of sampling frequency on estimation of annual total phosphorus and total suspended solids loads[J]. Journal of the American Water Resources Association, 2012, 48(6):1258-1275.
[10] WANG H, ZHOU Y Y, TANG Y, et al. Fluctuation of the water environmental carrying capacity in a huge river-connected lake[J]. International Journal of Environmental Research and Public Health, 2015, 12(4):3564-3578.
[11] 陈晓玲, 张媛, 张琍, 等. 丰水期鄱阳湖水体中氮, 磷含量分布特征[J]. 湖泊科学, 2013, 25(5):643-648.[CHEN X L, ZHANG Y, ZHANG L, et al. Distribution characteristic of nitrogen and phosphorus in lake Poyang during high water period[J]. Journal of Lake Sciences, 2013, 25(5):643-648.]
[12] 刘倩纯, 胡维, 葛刚, 等. 鄱阳湖枯水期水体营养浓度及重金属含量分布研究[J]. 长江流域资源与环境, 2012, 21(10):1230-1235.[LIU Q C, HU W, GE G, et al. Contents of nutrients and heavy metals in the Poyang Lake during dry season[J]. Resources and Environment in the Yangtze Basin, 2012, 21(10):1230-1235.]
[13] 吴召仕, 张路, 刘宝贵, 等. 鄱阳湖丰水期水体中叶绿素a含量空间分布及其与环境因子的关系[J]. 湿地科学, 2014, 12(3):286-292.[WU Z S, ZHANG L, LIU B G, et al. Spatial distribution of chlorophyll a in Poyang Lake during wet season and its relationship with environmental factors[J]. Wetland Science, 2014, 12(3):286-292.]
[14] 刘发根, 王仕刚, 郭玉银, 等. 鄱阳湖入湖、出湖污染物通量时空变化及影响因素(2008-2012年)[J]. 湖泊科学, 2014, 26(5):641-650.[LIU F G, WANG S G, GUO Y Y, et al. Spatial-temporal variations of pollutant fluxes of inflow and outflow of lake Poyang (2008-2012)[J]. Journal of Lake Sciences, 2014, 26(5):641-650.]
[15] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266.
[16] ZHAO P, TANG X Y, TANG J L, et al. Assessing water quality of Three Gorges Reservoir, China, over a five-year period from 2006 to 2011[J]. Water Resources Management, 2013, 27(13):4545-4558.
[17] ZHANG Y L, LIU X H, QIN B Q, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu:implications for lake ecological restoration[J]. Scientific Reports, 2016, 6:23867.
[18] R Development Core Team. R:a language and environment for statistical computing[J]//R Foundation for Statistical Computing. Vienna, Austria, 2013.
[19] WANG S R, JIN X C, BU Q Y, et al. Effects of dissolved oxygen supply level on phosphorus release from lake sediments[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 316(1/3):245-252.
[20] VEGA M, PARDO R, BARRADO E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998, 32(12):3581-3592.
[21] 王毛兰, 胡春华, 周文斌. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1):138-142.[WANG M L, HU C H, ZHOU W B. Concentration variations of N and P in Poyang Lake during high water period with analysis on their sources[J]. Resources and Environment in the Yangtze Basin, 2008, 17(1):138-142.]
[22] 方春明, 曹文洪, 毛继新, 等. 鄱阳湖与长江关系及三峡蓄水的影响[J]. 水利学报, 2012, 43(2):175-181.[FANG C M, CAO W H, MAO J X, et al. Relationship between Poyang Lake and Yangtze River and influence of Three Georges Reservoir[J]. Journal of Hydraulic Engineering, 2012, 43(2):175-181.]
[23] YAO X, WANG S R, NI Z K, et al. The response of water quality variation in Poyang Lake (Jiangxi, People's Republic of China) to hydrological changes using historical data and DOM fluorescence[J]. Environmental Science and Pollution Research, 2015, 22(4):3032-3042.
[24] SONDERGAARD M, JENSEN P J, JEPPESEN E. Retention and internal loading of phosphorus in shallow, eutrophic lakes[J]. The Scientific World Journal, 2001, 1:427-442.
[25] WHITE M S, XENOPOULOS M A, HOGSDEN K, et al. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region[J]. Hydrobiologia, 2008, 613(1):21-31.
[26] HÅKANSON L, PARPAROV A, HAMBRIGHT K D. Modelling the impact of water level fluctuations on water quality (suspended particulate matter) in Lake Kinneret, Israel[J]. Ecological Modelling, 2000, 128(2/3):101-125.
[27] SEILER L M N, FERNANDES E H L, MARTINS F, et al. Evaluation of hydrologic influence on water quality variation in a coastal lagoon through numerical modeling[J]. Ecological Modelling, 2015, 314:44-61.
[28] ZHOU W H, YIN K D, HARRISON P J, et al. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters[J]. Estuarine, Coastal and Shelf Science, 2012, 111:35-47.
[1] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[2] 卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(06): 925-936.
[3] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[4] 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460.
[5] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[6] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[7] 李文浩, 张萌, 门吉帅, 敖雪夫, 胡新艳, 欧阳珊, 吴小平. 江西仙女湖流域大型底栖动物群落结构及水质评价[J]. 长江流域资源与环境, 2016, 25(08): 1218-1227.
[8] 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155.
[9] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[10] 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506.
[11] 胡开明, 范恩卓. 西太湖区域水环境容量分配及水质可控目标研究[J]. 长江流域资源与环境, 2015, 24(08): 1373-1380.
[12] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[13] 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-.
[14] 吴楠, 高吉喜, 苏德毕力格, 罗遵兰, 李岱青. 长江上游植被净初级生产力年际变化规律及其对气候的响应[J]. 长江流域资源与环境, 2010, 19(04): 389-.
[15] 孟顺龙, 陈家长, 胡庚东, 瞿建宏, 吴伟, 范立民, 马晓燕. 太湖蠡湖浮游植物群落特征及其对水质的评价[J]. 长江流域资源与环境, 2010, 19(01): 30-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[5] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .