长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 289-296.doi: 10.11870/cjlyzyyhj201702015
李冰1,2, 杨桂山1, 万荣荣1, 刘宝贵1,2, 戴雪1,2, 许晨1,2
LI Bing1,2, YANG Gui-shan1, WAN Rong-rong1, LIU Bao-gui1,2, DAI Xue1,2, XU Chen1,2
摘要: 通过对鄱阳湖湖口2004~2014年以周为单位的水质指标,包括溶解氧(DO),氨氮(NH4+-N)和高锰酸盐指数(CODMn)的变化特征及其与水位响应关系进行分析,并对合理的监测频率进行了探讨。结果表明:(1)就DO,NH4+-N和CODMn而言,鄱阳湖出湖水质在2004~2014年没有显著恶化的趋势,然而在年内呈现明显的周期性变化,其浓度与湖泊水位波动有较显著的负相关性(p<0.01),相关系数分别达到-0.63,-0.67和-0.36;(2)考虑水质指标在湖相状态与河相状态存在显著的差异(p<0.01),概率密度分布曲线进一步表明,在鄱阳湖呈湖相时,湖口NH4+-N浓度小于0.25 mg/L的概率为93%,而在河相时仅为32.8%。DO与CODMn浓度在河湖相的特征与NH4+-N相似。因此,在湖相状态下,鄱阳湖出流水质良好的概率更大,而高水位下的稀释作用可能是影响湖泊年内变化的主要控制因素;(3)时间序列分析表明DO,NH4+-N和CODMn存在明显的自相关性,1~2月一次的监测频率基本能够准确的描述NH4+-N和DO的动态变化特征,而CODMn仍需要1~2周一次的监测,从而避免过多的损失动态信息。能够为将来更深入的研究湖泊水情与水质定量关系提供基础和思路,从而为湖泊水环境管理和调控提供对策和建议。
中图分类号:
[1] EPA. Surface water quality standards[R]. Washington, DC:US EPA, 2013. [2] HOUCK O A. Clean Water Act TMDL Program:Law, Policy, and Implementation[M]. Washington, DC:Environmental Law Institute, 1999. [3] BORSUK M E, STOW C A, RECKHOW K H. Predicting the frequency of water quality standard violations:a probabilistic approach for TMDL development[J]. Environmental Science & Technology, 2002, 36(10):2109-2115. [4] FAKHRAEI H, DRISCOLL C T, SELVENDIRAN P, et al. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York[J]. Atmospheric Environment, 2014, 95:277-287. [5] RUŽDJAK A M, RUŽDJAK D. Evaluation of river water quality variations using multivariate statistical techniques[J]. Environmental Monitoring and Assessment, 2015, 187(4):215. [6] SKARBØVIK E, STÅLNACKE P, BOGEN J, et al. Impact of sampling frequency on mean concentrations and estimated loads of suspended sediment in a Norwegian river:implications for water management[J]. Science of the Total Environment, 2012, 433:462-471. [7] LU X X, LI S Y, HE M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang basin:an example of the Longchuanjiang River, China[J]. Journal of Hydrology, 2011, 405(3/4):344-351. [8] ALEWELL C, LISCHEID G, HELL U, et al. High temporal resolution of ion fluxes in semi-natural ecosystems-gain of information or waste of resources[J]. Biogeochemistry, 2004, 69(1):19-35. [9] JONES A S, HORSBURGH J S, MESNER N O, et al. Influence of sampling frequency on estimation of annual total phosphorus and total suspended solids loads[J]. Journal of the American Water Resources Association, 2012, 48(6):1258-1275. [10] WANG H, ZHOU Y Y, TANG Y, et al. Fluctuation of the water environmental carrying capacity in a huge river-connected lake[J]. International Journal of Environmental Research and Public Health, 2015, 12(4):3564-3578. [11] 陈晓玲, 张媛, 张琍, 等. 丰水期鄱阳湖水体中氮, 磷含量分布特征[J]. 湖泊科学, 2013, 25(5):643-648.[CHEN X L, ZHANG Y, ZHANG L, et al. Distribution characteristic of nitrogen and phosphorus in lake Poyang during high water period[J]. Journal of Lake Sciences, 2013, 25(5):643-648.] [12] 刘倩纯, 胡维, 葛刚, 等. 鄱阳湖枯水期水体营养浓度及重金属含量分布研究[J]. 长江流域资源与环境, 2012, 21(10):1230-1235.[LIU Q C, HU W, GE G, et al. Contents of nutrients and heavy metals in the Poyang Lake during dry season[J]. Resources and Environment in the Yangtze Basin, 2012, 21(10):1230-1235.] [13] 吴召仕, 张路, 刘宝贵, 等. 鄱阳湖丰水期水体中叶绿素a含量空间分布及其与环境因子的关系[J]. 湿地科学, 2014, 12(3):286-292.[WU Z S, ZHANG L, LIU B G, et al. Spatial distribution of chlorophyll a in Poyang Lake during wet season and its relationship with environmental factors[J]. Wetland Science, 2014, 12(3):286-292.] [14] 刘发根, 王仕刚, 郭玉银, 等. 鄱阳湖入湖、出湖污染物通量时空变化及影响因素(2008-2012年)[J]. 湖泊科学, 2014, 26(5):641-650.[LIU F G, WANG S G, GUO Y Y, et al. Spatial-temporal variations of pollutant fluxes of inflow and outflow of lake Poyang (2008-2012)[J]. Journal of Lake Sciences, 2014, 26(5):641-650.] [15] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266. [16] ZHAO P, TANG X Y, TANG J L, et al. Assessing water quality of Three Gorges Reservoir, China, over a five-year period from 2006 to 2011[J]. Water Resources Management, 2013, 27(13):4545-4558. [17] ZHANG Y L, LIU X H, QIN B Q, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu:implications for lake ecological restoration[J]. Scientific Reports, 2016, 6:23867. [18] R Development Core Team. R:a language and environment for statistical computing[J]//R Foundation for Statistical Computing. Vienna, Austria, 2013. [19] WANG S R, JIN X C, BU Q Y, et al. Effects of dissolved oxygen supply level on phosphorus release from lake sediments[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 316(1/3):245-252. [20] VEGA M, PARDO R, BARRADO E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998, 32(12):3581-3592. [21] 王毛兰, 胡春华, 周文斌. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1):138-142.[WANG M L, HU C H, ZHOU W B. Concentration variations of N and P in Poyang Lake during high water period with analysis on their sources[J]. Resources and Environment in the Yangtze Basin, 2008, 17(1):138-142.] [22] 方春明, 曹文洪, 毛继新, 等. 鄱阳湖与长江关系及三峡蓄水的影响[J]. 水利学报, 2012, 43(2):175-181.[FANG C M, CAO W H, MAO J X, et al. Relationship between Poyang Lake and Yangtze River and influence of Three Georges Reservoir[J]. Journal of Hydraulic Engineering, 2012, 43(2):175-181.] [23] YAO X, WANG S R, NI Z K, et al. The response of water quality variation in Poyang Lake (Jiangxi, People's Republic of China) to hydrological changes using historical data and DOM fluorescence[J]. Environmental Science and Pollution Research, 2015, 22(4):3032-3042. [24] SONDERGAARD M, JENSEN P J, JEPPESEN E. Retention and internal loading of phosphorus in shallow, eutrophic lakes[J]. The Scientific World Journal, 2001, 1:427-442. [25] WHITE M S, XENOPOULOS M A, HOGSDEN K, et al. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region[J]. Hydrobiologia, 2008, 613(1):21-31. [26] HÅKANSON L, PARPAROV A, HAMBRIGHT K D. Modelling the impact of water level fluctuations on water quality (suspended particulate matter) in Lake Kinneret, Israel[J]. Ecological Modelling, 2000, 128(2/3):101-125. [27] SEILER L M N, FERNANDES E H L, MARTINS F, et al. Evaluation of hydrologic influence on water quality variation in a coastal lagoon through numerical modeling[J]. Ecological Modelling, 2015, 314:44-61. [28] ZHOU W H, YIN K D, HARRISON P J, et al. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters[J]. Estuarine, Coastal and Shelf Science, 2012, 111:35-47. |
[1] | 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840. |
[2] | 卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(06): 925-936. |
[3] | 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954. |
[4] | 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460. |
[5] | 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281. |
[6] | 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303. |
[7] | 李文浩, 张萌, 门吉帅, 敖雪夫, 胡新艳, 欧阳珊, 吴小平. 江西仙女湖流域大型底栖动物群落结构及水质评价[J]. 长江流域资源与环境, 2016, 25(08): 1218-1227. |
[8] | 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155. |
[9] | 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849. |
[10] | 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506. |
[11] | 胡开明, 范恩卓. 西太湖区域水环境容量分配及水质可控目标研究[J]. 长江流域资源与环境, 2015, 24(08): 1373-1380. |
[12] | 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404. |
[13] | 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-. |
[14] | 吴楠, 高吉喜, 苏德毕力格, 罗遵兰, 李岱青. 长江上游植被净初级生产力年际变化规律及其对气候的响应[J]. 长江流域资源与环境, 2010, 19(04): 389-. |
[15] | 孟顺龙, 陈家长, 胡庚东, 瞿建宏, 吴伟, 范立民, 马晓燕. 太湖蠡湖浮游植物群落特征及其对水质的评价[J]. 长江流域资源与环境, 2010, 19(01): 30-. |
|