长江流域资源与环境 >> 2020, Vol. 29 >> Issue (6): 1413-1421.doi: 10.11870/cjlyzyyhj202006015

• 生态环境 • 上一篇    下一篇

合肥市PM2.5浓度时空分布特征及影响因素分析

王佳佳1,2,夏晓圣1,2,程先富1,2*,廖润霞1,2   

  1. (1.安徽师范大学地理与旅游学院,安徽 芜湖 241002;
    2.安徽自然灾害过程与防控研究省级实验室,安徽 芜湖 241002)
  • 出版日期:2020-06-20 发布日期:2020-07-20

Temporal and Spatial Distribution Characteristics and Influencing Factors of PM2.5 Concentration in Hefei City

WANG Jia-jia 1,2, XIA Xiao-sheng  1,2,CHENG Xian-fu  1,2, LIAO Run-xia 1,2   

  1. (1. College of Geography and Tourism,Anhui Normal University,Wuhu 241002,China;
    2. Anhui Key Laboratory of Natural Disaster Process and Prevention,Wuhu 241002,China)
  • Online:2020-06-20 Published:2020-07-20

摘要:
摘要: 利用2017年合肥市污染监测站点PM2.5浓度数据、气象数据以及土地利用类型数据,结合随机森林算法(RF)与土地利用回归模型(LUR),模拟合肥市PM2.5浓度空间分布,并利用主成分分析法对PM2.5影响因素进行分析。结果表明:(1)合肥市PM2.5浓度日变化特征大致呈双峰变化,春季、夏季及秋季的峰值多出现在8∶00~9∶00,而冬季的峰值则出现在10∶00~11∶00。低谷值大致都出现在15∶00~17∶00。全年PM2.5浓度变化趋势与春季类似。夏季PM2.5浓度变化最为平稳。(2)2017年合肥市PM2.5浓度分布由城市中心向外减弱,形成北高南低,西高东低的空间分布格局。(3)影响因素方面,PM2.5浓度变化与降水、风速以及相对湿度等呈负相关关系,日照对PM2.5浓度的影响较大,气压及其他污染物与PM2.5浓度呈正相关关系,其中NO2对PM2.5浓度的影响力度较大。

Abstract: Abstract:With the acceleration of urbanization, air pollution has become one of the major problems faced by every city.We used the concentration data, meteorological data and land use type data of 2017 PM2.5 monitoring station in Hefei,and we combined the random forest algorithm (RF) and land use regression model (LUR), to simulated the spatial distribution characteristics of PM2.5 concentration in Hefei.And the influencing factors of PM2.5 were analyzed by principal component analysis.The results showed that: (1) The daily variation characteristics of PM2.5 concentration in Hefei City showed two peaks, most of which appeared at 8∶00-9∶00 in spring, summer and autumn, while appeared at 10∶00-11∶00 in winter.The low values are generally between 15∶00 and 17∶00. The change trend of PM2.5 concentration in the whole year is similar to that in spring. The change of PM2.5 concentration is the most stable in summer.(2) In 2017, the concentration distribution of PM2.5 in Hefei weakened from the city center to the outside, forming a spatial distribution pattern of high in the north and low in the south, high in the West and low in the East.(3) In terms of influencing factors, the change of PM2.5 concentration is negatively correlated with precipitation, wind speed and relative humidity, sunlight has a greater influence on PM2.5 concentration, air pressure and other pollutants have a positive correlation with the change of PM2.5 concentration, and NO2 among atmospheric pollutants has a greater influence on the change of PM2.5 concentration.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周克昊,刘艳芳,谭荣辉. 长江中游城市群综合发展水平时空分异研究[J]. 长江流域资源与环境, 2014, 23(11): 1502 .
[2] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[3] 张梦薇, 吕成文. 丰乐河流域表层土壤有机碳空间变异特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1420 .
[4] 张丽琴, 渠丽萍, 吕春艳, 李 玲. 基于空间格局视角的武汉市土地生态系统服务价值研究[J]. 长江流域资源与环境, 2018, 27(09): 1988 -1997 .
[5] 田雨 周宝同 付伟 王蓉. 2000-2015年山地城市土地利用景观格局动态演变研究—以重庆市渝北区为例[J]. 长江流域资源与环境, 0, (): 0 .
[6] 曾源源, 胡守庚, 瞿诗进, . 长江中游经济带交通区位条件变化与建设用地扩张时空耦合规律[J]. 长江流域资源与环境, 2018, 27(12): 2651 -2662 .
[7] 梁辉 王春凯. 201904产业发展对城市蔓延影响的差异性分析—以长江经济带104个城市为例[J]. 长江流域资源与环境, 0, (): 0 .
[8] 杨远琴, 任 平, 洪步庭, . 基于生态安全的三峡库区重庆段土地利用冲突识别[J]. 长江流域资源与环境, 2019, 28(02): 322 -332 .
[9] 王 倩, 王云琦, 马 超, 王 彬, 李一凡. 缙云山针阔混交林碳通量变化特征及影响因子研究[J]. 长江流域资源与环境, 2019, 28(03): 565 -576 .
[10] 卢德彬, 毛婉柳, 杨东阳, 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, 2019, 28(03): 651 -660 .