长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 1012-1020.doi: 10.11870/cjlyzyyhj201506016

• 生态环境 • 上一篇    下一篇

快速城镇化地区生态用地演变及驱动力分析

周锐1,2, 胡远满3, 王新军1,2, 苏海龙1,2, 王燚1,2   

  1. 1. 复旦大学环境科学与工程系, 上海 200433;
    2. 复旦大学城市规划与发展研究中心, 上海 200433;
    3. 中国科学院沈阳应用生态研究所, 辽宁 沈阳 110016
  • 收稿日期:2014-04-21 修回日期:2014-06-04 出版日期:2015-06-20
  • 作者简介:周 锐(1980~ ),男,高级工程师,博士,主要从事城市规划与生态安全方面研究. E-mail: zhourui1215@163.com*
  • 基金资助:
    国家科技支撑计划项目(2006BAJ10B05);国家自然科学基金资助项目(51378127,41271201)

CHANGE CHARACTERISTICS OF ECOLOGICAL LAND AND ITS DRIVING FACTORS IN RAPIDLY URBANIZING REGION

ZHOU Rui1,2, HU Yuan-man3, WANG Xin-jun1,2, SU Hai-long1,2, WANG Yi1,2   

  1. 1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
    2. Research Center for Urban Planning and Development, Fudan University, Shanghai 200433, China;
    3. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2014-04-21 Revised:2014-06-04 Online:2015-06-20
  • Contact: 王新军 E-mail:fudanwxj@163.com

摘要: 基于高分辨率遥感影像、GIS和RS技术,利用转移矩阵、景观指数和地图叠加等方法系统分析了辛庄镇域生态用地演变的时空特征,并引入二项Logistic回归模型,选择到农村居民点的距离、到道路的距离、到河流水系的距离、到村镇中心的距离、人均GDP、人均工业总产值、人均农业总产值、人均收入、人口密度为驱动因子,对研究区主要类型生态用地变化的驱动力进行分析。结果表明:1991~2009年,辛庄镇生态用地空间结构和面积变化剧烈,总体上呈加速缩减趋势。其中,水田面积变化尤为明显,18 a间累积减少1 806.61 hm2;经济效益较高的水产养殖用地和园地规模有所增长,尤其是水产养殖用地,1991~2009年年均增长43.01 hm2,长幅为93.26%。生态用地主要转移去向为水产养殖用地、居住用地和工业用地。生态用地总体上破碎化程度加剧,类型水平上,大体上呈现为破碎度加剧、景观形状日趋规则、优势度逐渐降低、聚集度日益增加的态势。各时段生态用地演变的主要驱动因子均为邻域因子,但随着时间的推移,社会经济因子对生态用地变化的解释效力逐渐增强。

关键词: 生态用地, 景观指数, Logistic回归模型, GIS

Abstract: As one of the most important components of the urban social-economic-natural complex ecosystem, ecological lands provide various critical ecosystem services. As an essential resource for human being, the protection of existing ecological land, the restoration of currently damaged ecological zones, and the return of naturally ecological land are important measures for improving and balancing regionally ecological conditions. These methods are also useful for sustainable development and harmony between human and nature. In view of ecosystem services of ecological land and ecological environment effects of land use and land cover change during rapid urbanization processes, it is necessary to select typical urbanization area to quantify the spatiotemporal characteristics and driving mechanisms of ecological land use change, which plays practical roles in providing spatial strategies for improving regionally ecological security and establishing urban ecological security pattern. The research area of this study is located in Xinzhuang Town of Changshu City, south Jiangsu Province, which experiences the most rapid industrialization across China in the past decades. As time goes by with the acceleration of urbanization, considerable amount of ecological land resource has been consumed with the deteriorated ecological environment and the fragmented landscape. Based on high resolution remote sensing images, integrated with GIS and RS technology, and by utilizing transfer matrix and landscape pattern metrics, this study systematically analyzed the changing characteristics of ecological land in Xinzhuang Town. A logistic regression model has also been employed to analyze the driving forces of the main types of ecological land change, with per capita GDP, per capita gross industrial output, per capita gross agricultural output, per capita income, population density and the distance to nearest rural settlements, major road, river, and village center as possible driving factors. Main conclusions are as follows. During the period of 1991-2009, the spatial structure and area of ecological land have been dramatically changed in Xinzhuang Town, with an accelerated decreasing trend. Among these changes, the area of paddy fields change was obvious that the cumulative reduction was 1 806.61 hm2; while both the aquaculture land and garden plot with higher economic benefits were increased, especially the former, whose average annual growth was 43.01 hm2 between 1991 and 2009. The decreased ecological land was mainly transferred to aquaculture land, residential land and industrial land. At class level, the fragmentation and aggregation increased, dominance decreased, and landscape shape was more and more regular for most of the ecological land types. Logistic regression results showed that for the paddy fields coverage change, "distance to nearest river", "distance to nearest road", and "distance to nearest rural settlement" were the most important independent variables in the first period of 1991-2001, while "distance to nearest river", "Per capita GDP", and "Per capita industrial output" were the most important independent variables over the second period of 2001-2009. For aquaculture land coverage change, the main driving factors in the first period were "distance to nearest river" and "distance to nearest road", while "distance to nearest rural settlement" seemed to be more important in the second period. For forest land coverage change, it was found that in the first period, "distance to nearest village center" and "distance to nearest road" have produced greater influence, and in the second period, "distance to nearest road" and "population density" were more important. However, due to the deficiency of quantification and space technology of policy factors, this study did not consider the policy factors, such as land development, management and ecological protection. Further studies are needed to explore how to add policy factors to improve the fitting precision of the model and practical application effects, and thus provide more scientific decision support for urban ecological security and regional sustainable development.

Key words: ecological land, landscape pattern metrics, logistic regression model, GIS

中图分类号: 

  • X171.1
[1] 李 锋,叶亚平,宋博文,等.城市生态用地的空间结构及其生态系统服务动态演变——以常州市为例[J].生态学报,2011,31(19):5623-5631.
[2] 谢花林.基于Logistic回归模型的区域生态用地演变影响因素分析——以京津冀地区为例[J].资源科学,2011,31(19):5623-5631.
[3] 苏伟忠,杨桂山,甄 峰,等.长江三角洲生态用地破碎度及其城市化关联[J].地理学报,2007,62(12):1309-1317.
[4] 叶兴平,何常清,陈燕飞,等.低碳生态视角下的江苏省生态空间规划研究[J].城市规划,2013,37(2):23-26.
[5] 周 锐,李月辉,胡远满等.苏南地区典型城镇建设用地扩展的时空分异[J].应用生态学报,2011,22(3):577-584.
[6] 詹运洲,李 艳.特大城市城乡生态空间规划方法及实施机制思考[J].城市规划学刊,2011,194(2):49-57.
[7] 张 浩,马蔚纯,Hing H H,等.基于LUCC的城市生态安全研究进展[J].生态学报,2007,27(5):2109-2117.
[8] 岳文泽,徐建华,徐丽华,等.基于遥感影像的城市土地利用生态环境效应研究——以城市热环境和植被指数为例[J].生态学报,2006,26(5):1450-1460.
[9] 陈 爽,刘云霞,彭立华,等.城市生态空间演变规律及调控机制——以南京市为例[J].生态学报,2008,28 (5):2270-2278.
[10] 马学广.大都市边缘区制度性生态空间的多元治理——政策网络的视角[J].地理研究,2011,30(7):1215-1226.
[11] 关小克,张凤荣,王秀丽,等.北京市生态用地空间演变与布局优化研究[J].地域研究与开发,2013,32(3):119-124.
[12] 龙花楼,李秀彬.长江沿线样带土地利用格局及其影响因子分析[J].地理学报,2001,56(4):407-416.
[13] 于兴修,杨桂山.中国土地利用/覆被变化研究的现状与问题[J].地理科学进展,2002,21(1):51-57.
[14] 谭永忠,吴次芳,牟永铭,等.经济快速发展地区县级尺度土地利用空间格局变化模拟[J].农业工程学报,2006,22(12):72-77.
[15] 马荣华,陈 雯,陈小卉,等.常熟市城镇用地扩展分析[J].地理学报,2004,59(3):418-426.
[16] 周 锐,胡远满,苏海龙,等.苏南典型城镇耕地景观动态变化及其影响因素[J].生态学报,2011,31(20):5937-5945.
[17] 郭荣朝,苗长虹.城市群生态空间结构研究[J].经济地理,2007,27(1):104-107.
[18] LI X Z,BU RC,CHANG Y.The response of landscape metrics against pattern scenarios[J].Acta Ecologica Sinica,2004,24:123-134.
[19] WU J G.Effects of changing scale on landscape pattern analysis:Scaling relations[J].Landscape Ecology,2004,19:125-138.
[20] CATRY F X,REGO F C,BACAO F L.Modeling and mapping wildfire ignition risk in Portugal[J].International Journal of Wild Land Fire,2009,18:921-931.
[21] QIU P F,WU N,LUO P.Analysis of dynamics and driving factors of wetland landscape in Zoige,Eastern Qinghai-Tibetan Plateau[J].Journal of Mountain Science,2009,6:42-55.
[22] PONTIUS R G,SCHNEIDER L.Land-cover change model validation by a ROC method for the Ipswich watershed,Massachusetts,USA[J].Agriculture,Ecosystems and Environment,2001,85(2):239-248.
[23] HE H S,Dezonia B E,MLADENNOFF D J.An aggregation index (AI) to quantify spatial patterns of landscapes[J].Landscape Ecology,2000,15:591-601.
[1] 王宇环, 靳 诚, 安鸿波, 刘 月. 基于低碳出行方式的南京市本地居民景点可达性研究[J]. 长江流域资源与环境, 2018, 27(11): 2443-2452.
[2] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[3] 刘钢, 宋亚倩, 樊力硕, 汪志强. 基于有序Logistic回归的水库移民住房感知实证研究[J]. 长江流域资源与环境, 2017, 26(04): 519-529.
[4] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[5] 戴刘冬, 周锐, 张凤娥, 王新军. 城市土地利用对居民通勤碳排放的影响研究[J]. 长江流域资源与环境, 2016, 25(Z1): 68-77.
[6] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[7] 刘金珍, 樊皓, 阮娅. 乌东德水库坝前段消落带生态类型划分及生态修复模式初探[J]. 长江流域资源与环境, 2016, 25(11): 1767-1773.
[8] 戴德艺, 饶映雪, 刘殿锋, 刘成武. 1989~2015年武汉市城市格局时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1545-1554.
[9] 马勇, 童昀. 水利旅游资源空间结构特征及自驾车可达性研究——以长江中游城市群国家水利风景区为例[J]. 长江流域资源与环境, 2016, 25(08): 1167-1175.
[10] 张勤才, 马友华, 杨生华, 李小刚, 王静. 基于GIS的芜湖市耕地地力评价[J]. 长江流域资源与环境, 2016, 25(02): 226-233.
[11] 陈宇, 单玉红, 陈银蓉. 碳氧平衡约束下武汉市土地利用结构优化情景模型研究[J]. 长江流域资源与环境, 2015, 24(12): 2030-2037.
[12] 施媛媛, 李仁东, 徐兴建, 邱娟, 刘可群, 常变蓉, 易凤佳. 1980年来湖北省钉螺分布区域及其数量的消长分析[J]. 长江流域资源与环境, 2015, 24(10): 1744-1750.
[13] 蒋金亮, 周亮, 吴文佳, 孙东琪, 徐建刚. 长江沿岸中心城市土地扩张时空演化特征——以宁汉渝3市为例[J]. 长江流域资源与环境, 2015, 24(09): 1528-1536.
[14] 姚飞, 陈龙乾, 张宇, 吴沛瑶, 张红梅, 王秉义. 巢湖水陆交错带生态服务价值梯度分析[J]. 长江流域资源与环境, 2015, 24(09): 1568-1576.
[15] 张孝宇, 赖宗裕, 张安录. 基于地块尺度的耕地非农化驱动力空间异质性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(06): 994-1002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[5] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[6] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[7] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[8] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 杨丽霞,杨桂山,苑韶峰. 数学模型在人口预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(3): 287 -291 .