长江流域资源与环境 >> 2016, Vol. 25 >> Issue (02): 326-333.doi: 10.11870/cjlyzyyhj201602019

• 生态环境 • 上一篇    下一篇

陕西省油松混交林木质残体储量与腐烂特征

龚直文1, 王广儒2, 顾丽1   

  1. 1. 西北农林科技大学, 陕西 杨凌 712100;
    2. 延安市黄龙山林业局, 陕西 延安 715700
  • 收稿日期:2015-04-27 修回日期:2015-08-26 出版日期:2016-02-20
  • 通讯作者: 顾丽,E-mail:guli_bj@126.com E-mail:guli_bj@126.com
  • 作者简介:龚直文(1980~),男,讲师,博士,主要从事森林资源监测与评价.E-mail:gozewe@126.com
  • 基金资助:
    国家自然科学基金项目(31300538,31400540);西北农林科技大学基本科研业务费专项资金(编号:QN2013082);西北农林科技大学第二批基本科研业务费青年培育专项(2452015335)

STORAGE AND DECAY CHARACTERISTICS OF WOODY DEBRIS IN PINUS TABULAEFORMIS MIXED STANDS

GONG Zhi-wen1, WANG Guang-ru2, GU Li1   

  1. 1. North West Agriculture and Forestry University, Yangling 712100, China;
    2. Forestry Burean of Huanglong, Yanan 715700, China
  • Received:2015-04-27 Revised:2015-08-26 Online:2016-02-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No.31300538 and 31400540);Basic Scientific Research Business Expenses of Northwest A & F University (Grant No.QN2013082);Youth Development Project of Second Basic Scientific Research Business Expenses of Northwest A & F University (Grant No.2452015335)

摘要: 木质残体是油松针阔混交林的重要组成部分,具有多种的生态功能,对生态系统的稳定和发展有着不可忽视的作用。以陕西省黄龙山林区为研究区域,设置1 hm2(100 m×100 m)的固定样地,研究典型油松针阔混交林木质残体的储量组成、优势树种的空间关系、腐烂特征及密度与含水量,研究结果表明:(1) 研究区油松针阔混交林内木质残体的总储量为10.73 t·hm-2,倒木是林分内木质残体的主要来源。在径级组成结构上,径级20 cm以上的木质残体储量占总储量的绝大部分。腐烂等级中,以腐烂等级Ⅱ与腐烂等级Ⅲ的木质残体贮量最多;(2) 利用线性模型模拟该林分木质残体的分解密度与含水量,其拟合结果显示木质残体的密度随着腐烂等级的增加而呈现下降趋势,而含水量则随着腐烂等级的增加而呈现升高的趋势;(3) 林分内主要研究树种(油松、白桦和山杨)之间在小空间尺度上呈负关联,大尺度下呈正关联,顶级树种与先锋树种间达到互利共生,群落具有较大稳定性。林分内种间竞争的结果将为地带性顶级树种油松代替白桦与山杨等先锋树种。天然油松针阔混交林木质残体的贮量组成及腐烂特征反映了该区森林群落演替后期阶段木质残体的结构特征,本文的研究结果为我国黄土高原针阔混交林生态系统的管理和保护以及可持续经营提供科学依据。

关键词: 木质残体, 储量, 组成, 含水量, 腐烂特征

Abstract: Woody debris (WD), mainlyincluding coarse woody debris and fine woody debris, was an important part with a variety of ecological functions in natural Pinus tabulaeformis mixed stands, which cannot be neglected effect on stability and development of the forest ecosystem. In this paper, a permanent sample plot (100 m×100 m) was set up on Huanglong Mountain of Loess Plateau, and conducted the survey and coordinate positioning for each timber based on spatial-temporal method and the point pattern analysis method. The author studied the storage composition, Inter-and interspecies spatial associations, decay characteristics, density and water content dynamics in natural Pinus tabulaeformis mixed stands, and discussed the trend of dominant species distribution, then provided reference for sustainable management of related forest. The results showed that, (1) The total storage of woody debris was 10.73 t·hm-2, with 10.31 t·hm-2 and 0.42 t·hm-2 for the coarse woody debris and the fine woody debris, accounting for 96.09% and 13.91% of the total storage, respectively. The fallen wood was the main source of woody debris. The highest proportion were between 20-30 cm and 30-40 cm in diameter class, which were the absolute advantage in the number of diameter distribution, and the diameter greater than 20 cm accounted the majority of the total storage. According to the decay level, most of woody debris were focused on decay level Ⅱ and Ⅲ (the sum accounted for 69.98% and 73.49%, respectively); (2) Using the Linear model to simulate the decomposition density and water content of woody debris, the fitting results showed that the density of wood debris increased with a decline trend of decomposition level but, it showed the upward trend with the increasing with decay level for the water content; (3) The main species contained Pinus tabulaeformis, Birch and Aspen were changed from negative in small spatial scale to positive association in large spatial scale, and shared the environment resources in the end, so the forest communities had greater stability. The Inter-and interspecies spatial associations of woody debris were the results of long term interactions between the community and the natural environment, the forest ecological environment changed from positive pioneer species adaptation to shade tree species adaptation. The situation of woody debris in this forest reflected the structural characteristics of woody debris in late succession stage of the region, and the results would provide the scientific basis for forest management and ecosystems protection for Huanglong Mountain of Loess Plateau.

Key words: woody debris, storage, composition, water content, decay characteristics

中图分类号: 

  • S75
[1] 魏书精, 孙龙, 魏书威, 等. 森林生态系统粗木质残体研究进展[J]. 浙江农林大学学报, 2013, 30(4): 585-598.[WEI S J, SUN L, WEI S W, et al. Coarse woody debris in forest ecosystems: a review[J]. Journal of Zhejiang A & F University, 2013, 30(4): 585-598.]
[2] HARMON M E, FRANKLIN J F, SWANSON F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 1986, 15: 133-302.
[3] STORRY K A, WELDRICK C K, MEWS M, et al. Intertidal coarse woody debris: A spatial subsidy as shelter or feeding habitat for gastropods[J]. Estuarine, Coastal and Shelf Science, 2006, 66(1/2): 197-203.
[4] 闫恩荣, 王希华, 黄建军. 森林粗死木质残体的概念及其分类[J]. 生态学报, 2005, 25(1): 158-167.[YAN E R, WANG X H, HUANG J J. Concept and classification of coarse woody debris in forest ecosystems[J]. Acta Ecologica Sinica, 2005, 25(1): 158-167.]
[5] 陈华, 徐振邦. 粗木质物残体生态研究历史、现状和趋势[J]. 生态学杂志, 1991, 2(1): 89-91.[CHEN H, XU Z B. History, current situation and tendency of CWD ecological research[J]. Chinese Journal of Ecology, 1991, 2(1): 89-91.]
[6] CARMONA M R, ARMESTO J J, ARAVENA J C, et al. Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile[J]. Forest Ecology and Management, 2002, 164(1/3): 265-275.
[7] FORRESTER J A, MLADENOFF D J, GOWER S T, et al. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps[J]. Forest Ecology and Management, 2012, 265: 124-132.
[8] GUO J F, CHEN G S, XIE J S, et al. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China[J]. Annals of Forest Science, 2014, 71(5): 585-594.
[9] CREED I F, WEBSTER K L, MORRISON D L. A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay[J]. Canadian Journal of Forest Research, 2004, 34(3): 744-753.
[10] CARMONA M R, ARMESTO J J, ARAVENA J C, et al. Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile[J]. Forest Ecology and Management, 2002, 164(1/3): 265-275.
[11] 张慧玲, 杨万勤, 汪明, 等. 岷江上游高山森林溪流木质残体碳、氮和磷贮量特征[J]. 生态学报, 2015, 36(7), 1-8.[ZHANG H L, YANG W Q, WANG M, et al. Carbon, nitrogen and phosphorus storage of woody debris in headwater streams in an alpine forest in the upper reaches of Mingjiang River[J]. Acta Ecologica Sinica, 2015, 36(7), 1-8.]
[12] 陈瑶, 王法明, 莫其锋, 等. 氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J]. 应用与环境生物学报, 2015, 21(4): 747-753.[CHEN Y, WANG F M, MO Q F, et al. Effects of nitrogen and phosphorus additions on woody debris decomposition in a secondary tropical forest of south China[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(4): 747-753.]
[13] 王斌, 向悟生, 丁涛, 等. 弄岗喀斯特季节性雨林枯立木多度的空间分布及影响因子[J]. 科学通报, 2014, 59(35):3479-3490.[Wang B, Xiang W S, Ding T, et al. Spatial distribution of standing dead trees abundance and its impact factors in the Karst seasonal rain forest, Nonggang, southern China[J]. Chinese Science Bulletin, 2014, 59(35): 3479-3490.]
[14] 崔建, 朱志诚, 贾东林, 等. 陕北黄龙山森林植物群落的初步研究[J]. 陕西林业科技, 1991(4):17-21.[CUI J, ZHU Z C, JIA D L, et al. A preliminary study on forest communities in Huang Long Mountain of northern Shaanxi[J]. Shaanxi Forest Science and Technology, 1991(4): 17-21.]
[15] SOLLINS P. Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington[J]. Canadian Journal of Forest Research, 1982, 12(1): 18-28.
[16] CLARK D B, CLARK D A, BROWN S, et al. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient[J]. Forest Ecology and Management, 2002, 164(1/3): 237-248.
[17] 张金屯. 植物种群空间分布的点格局分析[J]. 植物生态学报, 1998, 22(4):344-349.[ZHANG J T. Analysis of spatial point pattern for plant species[J]. Acta Phytoecologica Sinica, 1998, 22(4): 344-349.]
[18] GETIS A, FRANKLIN J. Second-order neighborhood analysis of mapped point patterns[J]. Ecology, 1987, 68(3): 473-477.
[19] 袁杰, 张硕新. 秦岭火地塘天然次生油松林倒木密度与含水量变化特征研究[J]. 中南林业科技大学学报, 2012, 32(11):105-109.[YUAN J, ZHANG S X. Characteristics of fallen wood density and water content dynamics of Pinus tabulaeformis natural secondary forests in Huoditang Region in Qinling Mountains[J]. Journal of Central South University of Forestry & Technology, 2012, 32(11): 105-109.]
[20] NILSSON S G, NIKLASSON M, HEDIN J, et al. Densities of large living and dead trees in old-growth temperate and boreal forests[J]. Forest Ecology and Management, 2002, 161(1/3): 189-204.
[21] VON OHEIMB G, WESTPHAL C, TEMPEL H. Structural pattern of a near-natural beech (Fagus sylvatica) forest (Serrahn, North-east Germany)[J]. Forest Ecology and Management, 2005, 212(1/3): 253-263.
[22] HOLEKSA J. Coarse woody debris in a Carpathian subalpine spruce forest[J]. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 120(1/6): 256-270
[23] STORRY K A, WELDRICK C K, MEWS M, et al. Intertidal coarse woody debris: A spatial subsidy as shelter or feeding habitat for gastropods?[J]. Estuarine, Coastal and Shelf Science, 2006, 66(1/2): 197-203.
[24] 刘琪璟, 王战. 长白山岳桦林倒木及其与更新的关系[J]. 森林生态系统研究, 1992(6): 63-67.
[1] 崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐. 汉江上游风成谷地黄土的重矿物组成特征及意义[J]. 长江流域资源与环境, 2016, 25(06): 943-951.
[2] 田多松, 傅碧天, 吕永鹏, 杨凯, 车越. 基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究[J]. 长江流域资源与环境, 2016, 25(04): 613-620.
[3] 张亚男, 甘义群, 李小倩, 刘运德, 于凯, 张彬. 2013年长江丰水期河水化学特征及控制因素[J]. 长江流域资源与环境, 2016, 25(04): 645-654.
[4] 和丽萍, 孟广涛, 李贵祥, 李品荣, 柴勇. 金沙江头塘小流域人工林有机碳及其剖面分布特征[J]. 长江流域资源与环境, 2016, 25(03): 476-485.
[5] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[6] 张涛, 庄平, 章龙珍, 刘健, 王云龙, 侯俊利, 刘鉴毅, 冯广朋, 赵峰, 黄晓荣, 闫文罡. 长江口中华鲟自然保护区及临近水域鱼类种类组成现状[J]. 长江流域资源与环境, 2010, 19(04): 370-.
[7] 冯建孟, 徐成东, 查凤书, 董晓东, 杨自忠. 长江上游滇西北地区植物区系组成及物种多样性[J]. 长江流域资源与环境, 2010, 19(01): 65-.
[8] 陈校辉,边文冀,赵 钦,严维辉,彭 刚. 长江江苏段鱼类种类组成和优势种研究[J]. 长江流域资源与环境, 2007, 16(5): 571-571.
[9] 张 衡|何文珊, 童春富, 陆健健. 崇西湿地冬季潮滩鱼类种类组成及多样性分析[J]. 长江流域资源与环境, 2007, 16(3): 308-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈校辉,边文冀,赵 钦,严维辉,彭 刚. 长江江苏段鱼类种类组成和优势种研究[J]. 长江流域资源与环境, 2007, 16(5): 571 .
[2] 邵晓梅,王 静. 小城镇耕地集约利用评价方法比较研究 ——以浙江省慈溪市为例[J]. 长江流域资源与环境, 2008, 17(1): 93 .
[3] 魏 婷, 吴长年. 一种工业园区生态系统健康评价方法及其应用[J]. 长江流域资源与环境, 2007, 16(5): 680 .
[4] 陆应诚,王心源,高 超. 基于遥感技术的圩田时空特征分析——以皖东南及其相邻地域为例[J]. 长江流域资源与环境, 2006, 15(1): 61 -65 .
[5] 陶豫萍,吴 宁,罗 鹏,刘 兵. 森林对污染物(SO2-4)的过滤器效应研究[J]. 长江流域资源与环境, 2005, 14(5): 628 -632 .
[6] 胡明秀, 胡 辉, 王立兵. 武汉市工业“三废”污染状况计量模型研究[J]. 长江流域资源与环境, 2005, 14(4): 470 -474 .
[7] 刘 凯, 徐东坡, 张敏莹, 段金荣, 施炜纲. 崇明北滩鱼类群落生物多样性初探[J]. 长江流域资源与环境, 2005, 14(4): 418 -421 .
[8] 李阳兵,姜 丽,白晓永. 亚热带喀斯特石漠化土地退化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 195 -399 .
[9] 吴宜进. 近50年长江流域降水日数的演变趋势[J]. 长江流域资源与环境, 2008, 17(2): 217 .
[10] 段学军,陈 雯,许 刚,孙 伟,. 经济—生态导向的城市人口空间分布优化——以无锡市区为例[J]. 长江流域资源与环境, 2008, 17(5): 679 .