长江流域资源与环境 >> 2008, Vol. 17 >> Issue (1): 93-93.

• 农业发展 • 上一篇    下一篇

小城镇耕地集约利用评价方法比较研究 ——以浙江省慈溪市为例

邵晓梅|王 静   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-01-20

COMPARISON OF INTENSIVE CULTIVATED LAND USE APPRAISAL METHODS OF SMALL TOWNS—A CASE STUDY OF CIXI IN ZHEJIANG PROVINCE

SHAO Xiaomei|WANG Jing   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-01-20

摘要:

以浙江省慈溪市小城镇耕地利用现状数据为基础,以20个镇(街道)为评价单元,建立耕地集约利用评价指标体系,分别采用综合评价法和人工神经网络两种方法、四级评价标准对其耕地集约利用水平进行评价,为区域土地合理利用和科学规划提供依据。研究结果表明:①小城镇耕地集约利用评价指标体系可包括投入强度、利用程度、利用效率和持续状况4个准则层;②小城镇耕地集约利用是以资金的大量投入为重要表征的,因而其重要程度最高,而粮食稳定性指数在气候条件、水分条件较好的南方,其重要性最低;③慈溪市小城镇耕地集约利用水平区域差异较大,多数小城镇耕地利用处于II 级较集约和III 级基本集约水平;④采用的两种评价方法均能较好地反映小城镇耕地集约利用水平,比较而言,采用人工神经网络方法进行小城镇耕地集约利用评价较传统的通过确定权重进行评价的方法是更加有效的途径。

关键词: 小城镇, 耕地集约利用, 综合评价法, 人工神经网络

Abstract:

Intensive land use has not only become one of the important components of circular economy and economical society,but also the significant content in country land resource management. In order to improve cultivated land use level and establish scientific land planning, the indicator system for evaluation on the level of intensive cultivated land use was established based on the cultivated land use characteristics and land use data of twenty small towns in Cixi City. By using the general evaluation method and artificial neural network method and four evaluating grades, the conditions of intensive cultivated land use of small towns were evaluated. The results showed that (1) The indicator system for evaluation on the level of intensive cultivated land use included investment intensity, land use degree, land use efficiency and persistency of cultivated land. (2) As for the weights of evaluation indicators, fund was the most important indicator because it was an important token of intensive cultivated land use; on the other hand, grain yield stability index is of least importance in southward where climate conditions were rather well. (3) It can be concluded that there were clear regional differences in intensive land use of small towns in Cixi, and the level of intensive land use of most small towns were at the state of “better” or “general” intensive. (4) Both artificial neural network method and the general evaluation method can reflect the level of intensive land use well. However, artificial neural network do not need to define the evaluation weights of indictors by person, so it is a more effective approach than the general evaluation method comparatively

Key words: small town, intensive cultivated land use, general evaluation method, artificial neural network

[1] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[2] 朱天明, 杨桂山, 苏伟忠, 李峻峰. 兴化市小城镇土地集约利用综合评价研究[J]. 长江流域资源与环境, 2010, 19(01): 24-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[4] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[5] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .
[6] 崔 鸿, 汪 亮,. 略论我国长江渔业资源的法律保护[J]. 长江流域资源与环境, 2006, 15(1): 58 -60 .
[7] 徐慧娟,黎育红,孙燕. 长江宜昌水文站流量、含沙量和悬移质粒度关系[J]. 长江流域资源与环境, 2006, 15(Sup1): 110 -115 .
[8] 张信宝,曹植菁, 艾南山. 溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究[J]. 长江流域资源与环境, 2009, 18(2): 170 .
[9] 邓志强,任淑花. 长株潭地区经济增长与工业污染变迁的实证研究[J]. 长江流域资源与环境, 2008, 17(4): 517 .
[10] 胡海胜,郑艳萍. 庐山研究的文献分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 66 -71 .