长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 462-469.doi: 10.11870/cjlyzyyhj201603013

• 生态环境 • 上一篇    下一篇

武汉城市热岛特征及其影响因素分析

谢启姣1,2   

  1. 1. 湖北大学资源环境学院, 湖北 武汉 430062;
    2. 区域开发与环境响应湖北省重点实验室, 湖北 武汉 430062
  • 收稿日期:2015-08-11 修回日期:2015-10-19 出版日期:2016-03-20
  • 作者简介:谢启姣(1979~),女,博士,讲师,主要从事城市生态及环境问题研究. E-mail: xieqijiao@126.com
  • 基金资助:
    国家自然科学基金资助项目(编号:41401186);湖北省自然科学基金资助项目(编号:2014CFB346)

ANALYSIS ON CHARACTERISTICS AND INFLUENCING FACTORS OF URBAN HEAT ISLAND EFFECT IN WUHAN

XIE Qi-jiao1,2   

  1. 1. School of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
    2. Key Laboratory of Regional Development and Environmental Response(Hubei Province), Wuhan 430062, China
  • Received:2015-08-11 Revised:2015-10-19 Online:2016-03-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No.41401186);the Natural Science Foundation of Hubei Province (Grant No. 2014CFB346)

摘要: 正确理解城市热岛效应的形成机制及其影响因素是制定热岛效应缓解政策和研究城市生态问题的前提和基础。选用1987年9月26日的Landsat-5和2013年9月17日的Landsat-8遥感影像进行地表温度反演,分析武汉市城市热岛效应的时空演变特征;对热岛效应明显的武汉市主城区进行格网划分,提取格网内地表温度及所选影响因子指标值,运用主成分回归方法进行地表温度多因子综合分析,探讨城市热岛形成的主要影响因素。结果表明:(1)武汉市地表温度空间分布表现出典型的热岛特征,1987年和2013年分别有27.7%和39.1%的范围被"热岛"覆盖;(2)影响武汉城市热岛效应的主要因素有不透水面指数、水体面积比例、归一化建筑指数、归一化植被指数及绿地面积比例;(3)当其他影响因素稳定时,不透水面指数每增加1%,可使地表温度增温0.04℃~0.10℃;水体面积每增加1%,可降低地表温度0.03℃。

关键词: 热岛效应, 格网, 多因子, 主成分, 形成机制

Abstract: Understanding the formation mechanism of urban heat island (UHI) effect is crucial to study UHI mitigation strategies and other related urban ecological problems. Remote sensing images acquired on September 26, 1987 and September 17, 2013 in Wuhan were selected to derive land surface temperature (LST) values and detect the UHI effect. Mean LST and selected indices associated with UHI effect were calculated in each grid cells in the urbanized area. Principal component regression equations were modeled to find the key factors influencing LST distribution and UHI formation. Results indicated that: (1) high and sub-high temperatures built obvious heat "islands", covering 27.7% and 39.1% of Wuhan City in 1987 and 2013, respectively; (2) the key influencing factors on LST and UHI effect were impervious surface area index, percentage of water area, normalized difference built-up index, normalized difference vegetation index and percentage of green space; (3) as impervious surface area and percentage of water area increased at each 1%, LST value increased by 0.04-0.10 and decreased by 0.03, respectively.

Key words: urban heat island, gridding, multi-factors, principal component, formation mechanism

中图分类号: 

  • P463.3
[1] LUBER G, MCGEEHIN M. Climate change and extreme heat events[J]. American Journal of Preventive Medicine, 2008, 35(5):429-435.
[2] ZHENG B J, MYINT S W, FAN C. Spatial configuration of anthropogenic land cover impacts on urban warming[J]. Landscape and Urban Planning, 2014, 130:104-111.
[3] KOLOKOTRONI M, REN X, DAVIES M, et al. London's urban heat island:Impact on current and future energy consumption in office buildings[J]. Energy and Buildings, 2012, 47:302-311.
[4] SANTAMOURIS M, KOLOKOTSA D. On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe[J]. Energy and Buildings, 2015, 98:125-133.
[5] 曹进, 曾光明, 石林, 等. 基于RS和GIS的长沙城市热岛效应与TSP污染耦合关系[J]. 生态环境, 2007, 16(1):12-17.[CAO J, ZENG G M, SHI L, et al. Coupling relationship between the urban Heat-Island and the total suspended particles pollution in Changsha city based on remote sensing and GIS[J]. Ecology and Environment, 2007, 16(1):12-17.]
[6] SHI C, ROTH M, ZHANG H, et al. Impacts of urbanization on long-term fog variation in Anhui Province, China[J]. Atmospheric Environment, 2008, 42(36):8484-8492.
[7] POUMADÈRE M, MAYS C, LEMER S L, et al. The 2003 heat wave in France:Dangerous climate change here and now[J]. Risk Analysis, 2005, 25(6):1483-1494.
[8] 吴凡, 景元书, 李雪源, 等. 南京地区高温热浪对心脑血管疾病日死亡人数的影响[J]. 环境卫生学杂志, 2013, 3(4):288-292.[WU F, JING Y S, LI X Y, et al. Effect of heat wave on the death-toll of cardiovascular diseases in Nanjing Area[J]. Journal of Environmental Hygiene, 2013, 3(4):288-292.]
[9] LIN Y K, CHANG C K, LI Y C, et al. High-temperature indices associated with mortality and outpatient visits:Characterizing the association with elevated temperature[J]. Science of the Total Environment, 2012, 427-428:41-49.
[10] 谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011, 30(1):35-41.[XIE M M, WANG Y L, FU M C. An overview and perspective about causative factors of surface urban heat island effects[J]. Progress in Geography, 2011, 30(1):35-41.]
[11] MANEA D L, MANEA E, ROBESCU D N. Study on greenhouse gas emissions from wastewater treatment plants[J]. Environmental Engineering and Management Journal, 2013, 12(1):59-63.
[12] 刘新, 刘寿东, 赵小艳, 等. 南京城市化进程与热岛效应的初步研究[J]. 长江流域资源与环境, 2013, 22(12):1543-1549.[LIU X, LIU S D, ZHAO X Y, et al. A preliminary research of urbanization process and heat island effect in Nanjing[J]. Resources and Environment in the Yangtze Basin, 2013, 22(12):1543-1549.]
[13] 王频, 孟庆林. 城市人为热及其影响城市热环境的研究综述[J]. 建筑科学, 2013, 29(8):99-106.[WANG P, MENG Q L. Review on research of anthropogenic heat emission and its influence on urban thermal environment[J]. Building Science, 2013, 29(8):99-106.]
[14] FAN H L, SAILOR D J. Modeling the impacts of anthropogenic heating on the Urban climate of Philadelphia:a comparison of implementations in two PBL schemes[J]. Atmospheric Environment, 2005, 39(1):73-84.
[15] FREY C M, PARLOW E. Flux measurements in Cairo. Part 2:On the determination of the spatial radiation and energy balance using ASTER satellite data[J]. Remote Sensing, 2012, 4(9):2635-2660.
[16] MOHAN M, KANDYA A. Impact of urbanization and land-use/land-cover change on diurnal temperature range:A case study of tropical urban airshed of India using remote sensing data[J]. Science of the Total Environment, 2015, 506-507:453-465.
[17] 杨英宝, 苏伟忠, 江南, 等. 南京市热岛效应变化时空特征及其与土地利用变化的关系[J]. 地理研究, 2007, 26(5):877-886.[YANG Y B, SU W Z, JIANG N, et al. Spatial-temporal characteristics of urban heat island effect change of Nanjing city and its relation with land use change[J]. Geographical Research, 2007, 26(5):877-886.]
[18] CIVCO D L, HURD J D, WILSON E H, et al. Quantifying and describing urbanizing landscapes in the northeast United States[J]. Photogrammetric Engineering and Remote Sensing, 2002, 68(10):1083-1090.
[19] YUAN F, BAUER M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007, 106(3):375-386.
[20] 林云杉, 徐涵秋, 周榕. 城市不透水面及其与城市热岛的关系研究-以泉州市区为例[J]. 遥感技术与应用, 2007, 22(1):14-19.[LIN Y S, XU H Q, ZHOU R. A study on urban impervious surface area and its relation with urban heat island:Quanzhou City,China[J]. Remote Sensing Technology and Application, 2007, 22(1):14-19.]
[21] ESSA W, VAN DER KWAST J, VERBEIREN B, et al. Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:95-108.
[22] 魏锦宏, 谭春阳, 王勇山. 中心城区不透水表面与城市热岛效应关系研究[J]. 测绘与空间地理信息, 2014, 37(4):69-72.[WEI J H, TAN C Y, WANG Y S. Study on the relationship between heat island effect and impervious surface area in central city[J]. Geomatics & Spatial Information Technology, 2014, 37(4):69-72.]
[23] TANG Z, SHI C B, BI K X. Impacts of land cover change and socioeconomic development on ecosystem service values[J]. Environmental Engineering and Management Journal, 2014, 13(10):2697-2705.
[24] XIE Q J, ZHOU Z X. Impact of urbanization on urban heat island effect based on tm imagery in Wuhan, China[J]. Environmental Engineering and Management Journal, 2015, 14(3):647-655.
[25] CHEN X L, ZHAO H M, LI P X, et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote Sensing of Environment, 2006, 104(2):133-146.
[26] ZHANG Y S, ODEH I O A, HAN C F. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(4):256-264.
[27] SHUDO H, SUGIYAMA J, YOKOO N, et al. A study on temperature distribution influenced by various land uses[J]. Energy and Buildings, 1997, 26(2):199-205.
[28] LO C P, QUATTROCHI D A, LUVALL J C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect[J]. International Journal of Remote Sensing, 1997, 18(2):287-304.
[29] QIN Z, KARNIELI A, BERLINER P. A Mono-window algorithm for retrieving land surface temperature from Landsat tm data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
[30] Raynolds M K, Comiso J C, Walker D A, et al. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI[J]. Remote Sensing of Environment, 2008, 112(4):1884-1894.
[31] 李东海, 艾彬, 黎夏. 基于遥感和GIS的城市水体缓解热岛效应的研究——以东莞市为例[J]. 热带地理, 2008, 28(5):414-418.[LI D H, AI B, LI X. Urban Water body alleviating heat island effect based on RS and GIS:A case study of Dongguan City[J]. Tropical geography, 2008, 28(5):414-418.]
[32] NONOMURA A, KITAHARA M, MASUDA T. Impact of land use and land cover changes on the ambient temperature in a middle scale city, Takamatsu, in Southwest Japan[J]. Journal of Environmental Management, 2009, 90(11):3297-3304.
[33] 李成范, 刘岚, 周廷刚, 等. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1):60-65.[LI C F, LIU L, ZHOU T G, et al. Investigation on urban heat island effect of Chongqing City based on quantitative remote sensing technique[J]. Resources and Environment in the Yangtze Basin, 2009, 18(1):60-65.]
[34] 王文娟, 邓荣鑫. 城市绿地对城市热岛缓解效应研究[J]. 地理空间信息, 2014, 12(4):52-54.[WANG W J, DENG R X. Alleviative effects of urban green space on urban heat island[J]. Geospatial Information, 2014, 12(4):52-54.]
[35] 刘艳红, 郭晋平. 基于植被指数的太原市绿地景观格局及其热环境效应[J]. 地理科学进展, 2009, 28(5):798-804.[LIU Y H, GUO J P. The research of NDVI-based urban green space landscape pattern and thermal environment[J]. Progress in Geography, 2009, 28(5):798-804.]
[36] WENG Q H, LIU H, LIANG B Q, et al. The spatial variations of urban land surface temperatures:Pertinent factors, zoning effect, and seasonal variability[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2):154-166.
[37] 胡华浪, 陈云浩, 宫阿都. 城市热岛的遥感研究进展[J]. 国土资源遥感, 2005(3):5-9, 13.[HU H L, CHEN Y H, GONG A D. Advances in the application of remotely sensed data to the study of urban heat island[J]. Remote Sensing for Land & Resources, 2005(3):5-9, 13.]
[38] 杨英宝, 苏伟忠, 江南. 基于遥感的城市热岛效应研究[J]. 地理与地理信息科学, 2006, 22(5):36-40.[YANG Y B, SU W Z, JIANG N. Application of remote sensing to study urban heat island effect[J]. Geography and Geo-Information Science, 2006, 22(5):36-40.]
[39] 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛时空特征及其影响因素[J]. 气象科学, 2007, 27(2):230-236.[XIAO R B, OUYANG Z Y, LI W F, et al. Spatial-temporal distribution and causes of urban heat islands[J]. Scientia Meteorologica Sinica, 2007, 27(2):230-236.]
[40] DENG C B, WU C S. Examining the impacts of urban biophysical compositions on surface urban heat island:A spectral unmixing and thermal mixing approach[J]. Remote Sensing of Environment, 2013, 131:262-274.
[41] VAN DE GRIEND A A, OWE M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993, 14(6):1119-1131.
[42] 徐涵秋. 新型Landsat 8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3):741-747.[XU Q H. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3):741-747.]
[43] 宋挺, 段峥, 刘军志, 等. 基于Landsat-8数据和劈窗算法的地表温度反演及城市热岛效应研究[J]. 环境监控与预警, 2014, 6(5):4-14.[SONG T, DUAN Z, LIU J Z, et al. Land surface temperature retrieval from landsat-8 data using split-window algorithm and its application on the study of urban heat island effect[J]. Environmental Monitoring and Forewarning, 2014, 6(5):4-14.]
[44] RIDD M K. Exploring a V-I-S (vegetation-impervious-surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities[J]. International Journal ofRemoteSensing, 1995, 16(12):2165-2185.
[45] CARLSON T N. Land use and impervious surface area change by county in Pennsylvania (1985-2000) as interpreted quantitatively by means of satellite imagery[J]. The Open Geography Journal, 2012, 5(1):68-77.
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 卢德彬, 杨建, 毛婉柳, 禹真, 王祖静, 白彬. 山区农村居民点空间分布特征与空间重构研究[J]. 长江流域资源与环境, 2017, 26(02): 238-246.
[3] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[4] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[5] 任俊霖, 李浩, 伍新木, 李雪松. 基于主成分分析法的长江经济带省会城市水生态文明评价[J]. 长江流域资源与环境, 2016, 25(10): 1537-1544.
[6] 易予晴, 龙腾飞, 焦伟利, 彭剑威, 刘慧婵, 凌赛广. 武汉城市群夏季热岛特征及演变[J]. 长江流域资源与环境, 2015, 24(08): 1279-1285.
[7] 陈会广, 夏红, 肖毅, 李炜玮. 基于灰色关联和主成分分析的农村建设用地集约利用评价——以江苏省为例[J]. 长江流域资源与环境, 2015, 24(08): 1331-1336.
[8] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
[9] 杨立国, 周国华. 怀化城市形态的演变特征及形成机制[J]. 长江流域资源与环境, 2010, 19(03): 237-243.
[10] 但尚铭, 安海锋, 但玻, 许辉熙, 杨玲, 陈刚毅. 基于AVHRR和DEM的重庆城市热岛效应分析[J]. 长江流域资源与环境, 2009, 18(7): 680-.
[11] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60-.
[12] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60-60.
[13] 刘 宁,吴小庆,王志凤,王 远,陆根法,温剑锋,. 基于主成分分析法的产业共生系统生态效率评价研究[J]. 长江流域资源与环境, 2008, 17(6): 831-831.
[14] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124-124.
[15] 郑海霞, 童菊儿, 郑朝洪, 徐 扬. 东南沿海经济发达地区耕地数量的动态变化及其驱动力研究[J]. 长江流域资源与环境, 2007, 16(4): 435-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王毛兰,| 胡春华,周文斌,. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1): 138 .
[2] 姚成胜, 朱鹤健. 基于能值理论的福建省农业系统动态研究[J]. 长江流域资源与环境, 2008, 17(2): 247 .
[3] 沈亦龙,何品晶,邵立明. 太湖五里湖底泥污染特性研究[J]. 长江流域资源与环境, 2004, 13(6): 584 -588 .
[4] 涂建军. 四川省入境旅游客流时空动态模式研究[J]. 长江流域资源与环境, 2004, 13(4): 338 -342 .
[5] 于涛方, 吴志强. 长江三角洲都市连绵区边界界定研究[J]. 长江流域资源与环境, 2005, 14(4): 397 -404 .
[6] 邹胜章,梁 彬,朱志伟,梁小平. 生态系统变化对岩溶水资源的影响——以湘西为例[J]. 长江流域资源与环境, 2004, 13(6): 599 -603 .
[7] 王学雷,吴后建,任宪友. 长江中游湿地系统驱动关系的演变及保护展望[J]. 长江流域资源与环境, 2005, 14(5): 644 -648 .
[8] 梁武湖,马光文,王 黎,刘建明. 南水北调西线一期工程对金沙江上游梯级开发的发电影响[J]. 长江流域资源与环境, 2006, 15(1): 6 -9 .
[9] 周学武,王 芳. 农业综合开发项目优化设计及典型案例分析——以江汉平原荆州市为例[J]. 长江流域资源与环境, 2006, 15(1): 76 -80 .
[10] 刘 刚,沈 镭,孙尚志,张菲菲,. 金沙江下游梯级电站开发影响区域的资源开发与产业可持续发展[J]. 长江流域资源与环境, 2007, 16(5): 565 .