长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 567-572.doi: 10.11870/cjlyzyyhj201604005
张建伟1,2,4, 胡克2, 岳玮3, 刘宝林2, 王建2, 高擎4
ZHANG Jian-wei1,2,4, HU Ke2, YUE Wei3, LIU Bao-lin2, WANG Jian2, GAO Qing4
摘要: 上海城区地面沉降主要是由超采地下水、松散沉积地层压实等因素共同作用导致的,并引发多种次生灾害。F4分层标监测数据指示的地面沉降情况,显示上海城区地面沉降表现为总体具有非线性变化的规律,特别是1980年代以来,表现出垂向逐渐增大的特点,在空间上也不断扩展,直至2001年才始有缓和的趋势。在不同时段,随地下水开采量及开采层次的变化,上海城区地面沉降表现出不同的特征。结合1990~2009年20年内第四含水层地下水采灌量数据,得出地面沉降对地下水采灌量的响应关系为:地下水开采量增加,地层沉降量增大;地下水开采量减少,地层沉降量减小,但地面沉降相对于地下水开采具有滞后性;随着逐年的回灌,地层沉降量减小,且地下水回灌效果与回灌层位有直接关系。
中图分类号:
[1] 解晓南, 许朋柱, 秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 127-131. [XIE X N, XU P Z, QIN B Q. Analysis on problems and countermeasures of land surface subsidence in Tailake Basin[J]. Resources and Environment in the Yangtze Basin, 2005, 14(1): 127-131.] [2] 张阿根, 魏子新. 中国地面沉降[M]. 上海: 上海科学技术出版社, 2005. [ZHANG A G, WEI Z X. Chinese Land Subsidence[M]. Shanghai: Shanghai Science and Technology Press, 2005.] [3] ORTEGA-GUERRERO A, RUDOLPH D L, CHERRY J A. Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling[J]. Water Resources Research, 1999, 35(11): 3327-3341. [4] GAMBOLATI G, TEATINI P, TOMASI L, et al. Coastline regression of the Romagna region, Italy, due to sea level rise and natural and anthropogenic land subsidence[J]. Water Resources Research, 1999, 35(1): 163-184. [5] 郑铣鑫, 武强, 侯艳声, 等. 城市地面沉降研究进展及其发展趋势[J]. 地质论评, 2002, 48(6): 612-618. [ZHENG X X, WU Q, HOU Y S, et al. Advances and trends in research on urban land subsidence[J]. Geological Review, 2002, 48(6): 612-618.] [6] 严礼川. 我国城市地面沉降概况[J]. 上海地质, 1992(1): 40-48. [YAN L C. Survey of the city land subsidence in China[J]. Shanghai Geology, 1992(1): 40-48.] [7] 甘德福, 潘厚耀. 试论上海地面沉降的研究方向[J]. 中国地质, 1989(11): 15-17. [GAN D F, PAN H Y. Research on land subsidence in Shanghai[J]. Geology in China, 1989(11): 15-17. ] [8] TEATINI P, FERRONATO M, GAMBOLATI G, et al. A century of land subsidence in Ravenna, Italy[J]. Environmental Geology, 2005, 47(6): 831-846. [9] 薛禹群, 吴吉春, 张云, 等. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学 D辑: 地球科学, 2008, 38(4): 477-492. [XUE Y Q, WU J C, ZHANG Y, et al. Simulation of regional land subsidence in the southern Yangtze Delta[J]. Science in China Series D: Earth Sciences, 2008, 51(6): 808-825.] [10] 邱金波, 李晓. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社, 2007. [QIU J B, LI X. The Quaternary Strata and Sedimentary Environment of Shanghai City[M]. Shanghai: Shanghai Science and Technology Press, 2007.] [11] 张云, 薛禹群, 李勤奋. 上海现阶段主要沉降层及其变形特征分析[J]. 水文地质工程地质, 2003(5): 6-11. [ZHANG Y, XUE Y Q, LI Q F. Current prominent subsidence layer and its deformation properties in Shanghai[J]. Hydrogeology & Engineering Geology, 2003(5): 6-11.] [12] 叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147. [YE S J, XUE Y Q, ZHANG Y, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147.] [13] 邱蓓莉, 徐长乐, 刘洋, 等. 全球气候变化背景下上海市风暴潮灾害情景下脆弱性评估[J]. 长江流域资源与环境, 2014, 23(S): 149-158. [QIU B L, XU C L, LIU Y, et al. Vulnerability assessment of the impact of sea level rise and storm surges on Shanghai[J]. Resources and Environment in the Yangtze Basin, 2014, 23(S): 149-158.] [14] 叶淑君. 区域地面沉降模型的研究与应用[D]. 南京: 南京大学博士学位论文, 2004. [YE S J. Study on the regional land subsidence model and its application[D]. Nanjing: Doctor Dissertation of Nanjing University, 2004.] [15] 张阿根, 魏子新. 上海地面沉降研究的过去、现在与未来[J]. 水文地质工程地质, 2002, 29(5): 72-75. [ZHANG A G, WEI Z X. Past, present and future research on land subsidence in Shanghai City[J]. Hydrogeology & Engineering Geology, 2002, 29(5): 72-75.] [16] OSLEGER D, READ J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, U. S. A. [J]. Journal of Sedimentary Research, 1991, 61(7): 1225-1252. [17] 唐立刚. 天津市地面沉降的GPS监测研究[D]. 天津: 天津大学硕士学位论文, 2005: 28-36. [TANG L G. Research of monitoring land subsidence by GPS surveying in Tianjin[D]. Tianjin: Master Dissertation of Tianjin University, 2005: 28-36.] [18] 陈蓓蓓, 宫辉力, 李小娟, 等. 基于InSAR技术北京地区地面沉降监测与风险分析[J]. 地理与地理信息科学, 2011, 27(2): 16-20. [CHEN B B, GONG H L, LI X J, et al. Monitoring and risk analysis of land subsidence in Beijing based on interferometric synthetic aperture radar (InSAR) technique[J]. Geography and Geo-Information Science, 2011, 27(2): 16-20.] [19] LIU H, JEZEK K C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods[J]. International Journal of Remote Sensing, 2004, 25(5): 937-958. [20] RIGNOT E, RIVERA A, CASASSA G. Contribution of the Patagonia ice fields of South America to sea level rise[J]. Science, 2003, 302(5644): 434-437. [21] 许烨霜, 马磊, 沈水龙. 上海市城市化进程引起的地面沉降因素分析[J]. 岩土力学, 2011, 32(S): 578-582. [XU Y S, MA L, SHEN S L. Influential factors on development of land subsidence with process of urbanization in Shanghai[J]. Rock and Soil Mechanics, 2011, 32(S): 578-582.] [22] 龚士良. 上海地下水流场变化及对地面沉降发展的影响[J]. 水资源与水工程学报, 2009, 20(3): 1-6. [GONG S L. Change of groundwater seepage field and its influence on development of land subsidence in Shanghai[J]. Journal of Water Resources & Water Engineering, 2009, 20(3): 1-6.] [23] 邓青军, 唐仲华, 吴琦, 等. 荆州市地下水动态特征及影响因素分析[J]. 长江流域资源与环境, 2014, 23(9): 1215-1221. [DENG Q J, TANG Z H, WU Q, et al. Characteristics of groundwater and its influencing factors in Jingzhou city[J]. Resources and Environment in the Yangtze Basin, 2014, 23(9): 1215-1221.] [24] 薛禹群, 张云, 叶淑君, 等. 我国地面沉降若干问题研究[J]. 高校地质学报, 2006, 12(2): 153-160. [XUE Y Q, ZHANG Y, YE S J, et al. Research on the problems of land subsidence in China[J]. Geological Journal of China Universities, 2006, 12(2): 153-160.] [25] SAHAGIAN D L, HOLLAND S M. Eustatic sea-level curve based on a stable frame of reference: preliminary results[J]. Geology, 1991, 19(12): 1209-1212. [26] 曾昭华. 江汉平原东部地区地下水资源的开发利用与保护[J]. 长江流域资源与环境, 1996, 5(4): 375-378. [ZENG S H. The exploitation, utilization and protection of groundwater resource in the eastern area of Jianghan Plain[J]. Resources and Environment in the Yangtze Valley, 1996, 5(4): 375-378.] |
[1] | 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557. |
[2] | 张岩, 付昌昌, 毛磊, 龚绪龙, 李向全. 江苏盐城地区地下水水化学特征及形成机理[J]. 长江流域资源与环境, 2017, 26(04): 598-605. |
[3] | 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902. |
[4] | 龚继文, 李崇明, 程艳茹, 张韵, 赵丽. 基于GMS的山区三维地质模型及应用研究[J]. 长江流域资源与环境, 2016, 25(07): 1135-1141. |
[5] | 荆平 贾海峰. 流域地下水质评价的GIS与模型集成分析[J]. 长江流域资源与环境, 2009, 18(3): 248-253. |
[6] | 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721-721. |
[7] | 孙爱荣,周爱国,梁合诚,鄂 建. 九江市地下水易污性评价——基于DPASTIC指标的模糊综合评价模型[J]. 长江流域资源与环境, 2007, 16(4): 499-499. |
[8] | 李俊云,李林立,谢世友,李廷勇,李元庆. 人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J]. 长江流域资源与环境, 2007, 16(4): 514-514. |
[9] | 刘英华,张世熔, 张素兰, 魏 甦, 肖鹏飞. 成都平原地下水硝酸盐含量空间变异研究[J]. 长江流域资源与环境, 2005, 14(1): 114-118. |
[10] | 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125-131. |
|