长江流域资源与环境 >> 2016, Vol. 25 >> Issue (08): 1184-1190.doi: 10.11870/cjlyzyyhj201608004

• 自然资源 • 上一篇    下一篇

上海近海海域低层风特性分析

史军, 穆海振, 徐家良, 马悦   

  1. 上海市气候中心, 上海 200030
  • 收稿日期:2015-11-23 修回日期:2016-04-23 出版日期:2016-08-20
  • 作者简介:史军(1975~),男,高级工程师(正研级),博士,主要从事气候监测和气候变化研究.E-mail:shij@climate.sh.cn
  • 基金资助:
    中国清洁发展机制基金项目(2012043和1212117);国家自然科学基金项目(41571044)

CHARACTERISTICS OF LOW-LEVEL WIND IN SHANGHAI OFFSHORE

SHI Jun, MU Hai-zhen, XU Jia-liang, MA Yue   

  1. Shanghai Climate Center, Shanghai 200030, China
  • Received:2015-11-23 Revised:2016-04-23 Online:2016-08-20
  • Supported by:
    China Clean Development Mechanism (CDM) Fund Project (2012043 and 1212117);National Natural Science Foundation of China (41571044)

摘要: 基于南汇和奉贤两个海上测风塔观测资料,采用数值统计分析方法,研究了上海近海海域低层风特征,包括风切变指数特征、风的阵性特征和湍流强度特征。结果表明,上海近海10~70 m高度风切变指数在0.09左右,阵风系数在1.20左右,均小于《建筑结构荷载规范》的推荐值。随着风速的增大,风切变指数和阵风系数均呈减小的变化。当风力等级在4级及以上时,切变指数可靠性较好,阵风系数变化较小,湍流强度基本相等。上海近海阵风系数和湍流强度均随着高度的增加而减小,在40 m以上时都趋于稳定。研究结果可为上海近海风资源评价、重大工程规划设计和施工建设以及区域防灾减灾实践提供科学依据和参考。

关键词: 低层风特性, 风切变指数, 阵风系数, 湍流强度, 上海近海

Abstract: The development and utilization of wind energy resources is one of the important measures of energy development strategy and power structure adjustment in China. Compared with onshore wind, offshore wind farm has many advantages, such as saving land resources, higher wind speed, higher utilization rate of wind power, and no more complex terrain to affect air flow, which makes it become the forefront of wind power technology development and industry competition in China. However, many scholars have focused on the analysis of onshore wind energy resources, and there is few studies regarding to the offshore wind resources due to a relative lack of observation data. Based on the observation data from two anemometer towers in the coastal waters of Nanhui and Fengxian, the characteristics of low-level wind, including wind shear exponent, gustiness factor and turbulence intensity in Shanghai offshore, were analyzed with numerical statistical methods. The results indicate that wind shear exponent from 10 m to 70 m is about 0.09, and gustiness factor from 10 m to 70 m is about 1.20 in Shanghai offshore. Both wind shear exponent and gustiness factor are less than the recommended values of Load Code for the Design of Building Structures. With the increase of wind speed, both wind shear exponent and gustiness factor have decreasing trends. When the wind scale is in grade 4 or above, the wind shear exponent has a good reliability, the gustiness factor changes small and the turbulence intensity remains basically unchanged. Offshore gustiness factor and turbulence intensity decrease with the increase of height, and they are stable in the heights from 40 m to 70 m. The findings from this paper can provide scientific basis and reference for wind resource assessment, major engineering design and construction over Shanghai offshore as well as the regional disaster prevention and mitigation practice.

Key words: characteristics of low-level wind, wind shear exponent, gustiness factor, turbulence intensity, Shanghai offshore

中图分类号: 

  • P425.2
[1] 陈冬晓, 顾平, 石昌雪. 中国近海风电场浅谈[J]. 科技资讯, 2014(23): 114.
[2] 彭秀芳, 王秀杰, 辜晋德. 海上风电场风能计算中关于海面粗糙度问题的探讨[J]. 太阳能学报, 2012, 33(2): 226-229.[PENG X F, WANG X J, GU J D. Discuss on the sea surface roughness of the wind energy assessment in the offshore wind farm[J]. Acta Energiae Solaris Sinica, 2012, 33(2): 226-229.]
[3] 王志新, 王承民, 艾芊, 等. 近海风电场关键技术[J]. 华东电力, 2007, 35(2): 37-41.[WANG Z X, WANG C M, AI Q, et al. Key technology for offshore wind farms[J]. East China Electric Power, 2007, 35(2): 37-41.]
[4] 郑崇伟, 潘静. 全球海域风能资源评估及等级区划[J]. 自然资源学报, 2012, 27(3): 364-371.[ZHENG C W, PAN J. Wind energy resources assessment in global ocean[J]. Journal of Natural Resources, 2012, 27(3): 364-371.]
[5] 黄孝彬, 王晓称, 郭鹏. 考虑气象因子的海上短期风速预测[J]. 太阳能学报, 2014, 35(3): 475-480.[HUANG X B, WANG X C, GUO P. The forecasting of wind speed based on Dual-RBF neural network considering the meteorological factors[J]. Acta Energiae Solaris Sinica, 2014, 35(3): 475-480.]
[6] 许杨, 杨宏青, 陈正洪, 等. 湖北省丘陵山区风能资源特征分析. 长江流域资源与环境, 2014, 23(7): 937-943.[XU Y, YANG H Q, CHEN Z H, et al. Feature analysis on wind energy resources of hills and mountains in Hubei province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(7): 937-943.]
[7] 徐家良, 穆海振. 台风影响下上海近海风场特性的数值模拟分析[J]. 热带气象学报, 2009, 25(3): 281-286.[XU J L, MU H Z. Numerical simulation and analysis of offshore wind field features in Shanghai under the influence of typhoon[J]. Journal of Tropical Meteorology, 2009, 25(3): 281-286.]
[8] 周荣卫, 何晓凤. 海面动力学粗糙度参数化方案对近海风资源评估结果的影响[J]. 自然资源学报, 2015, 30(3): 513-522.[ZHOU R W, HE X F. Influence of different sea surface dynamical roughness parameterization method on wind energy resource assessment in offshore area[J]. Journal of Natural Resources, 2015, 30(3): 513-522.]
[9] 肖仪清, 李利孝, 宋丽莉, 等. 基于近海海面观测的台风黑格比风特性研究[J]. 空气动力学学报, 2012, 30(3): 380-387.[XIAO Y Q, LI L X, SONG L L, et al. Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements[J]. Acta Aerodynamica Sinica, 2012, 30(3): 380-387.]
[10] 王静静, 刘敏, 权瑞松, 等. 沿海港口自然灾害风险评价[J]. 地理科学, 2012, 32(4): 516-520.[WANG J J, LIU M, QUAN R S, et al. Natural disaster risk assessment of coastal ports in China[J]. Scientia Geographica Sinica, 2012, 32(4): 516-520.]
[11] 史军, 徐家良, 谈建国, 等. 上海地区不同重现期的风速估算研究[J]. 地理科学, 2015, 35(9): 1191-1197.[SHI J, XU J L, TAN J G, et al. Estimation of wind speeds for different recurrence intervals in Shanghai[J]. Scientia Geographica Sinica, 2015, 35(9): 1191-1197.]
[12] 谢萍, 谢忠, 周金莲, 等. 湖北省近50年风灾灾情分布特征分析[J]. 长江流域资源与环境, 2013, 22(S1): 122-126.[XIE P, XIE Z, ZHOU J L, et al. Distributions of wind disasters of Hubei province in recent 50 years[J]. Resources and Environment in the Yangtze Basin, 2013, 22(S1): 122-126.]
[13] 《中国气象灾害大典》编委会. 中国气象灾害大典: 上海卷[M]. 北京: 气象出版社, 2006: 1-222.
[14] 中华人民共和国住房和城乡建设部. GB 50009-2012建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012: 1-246.
[15] 中华人民共和国国家质量监督检验检疫总局. GB/T 18710-2002风电场风能资源评估方法[S]. 北京: 中国标准出版社, 2004: 1-19.[The state Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18710-2002 Methodology of wind energy resource assessment for wind farm[S]. Beijing: China Standard Publishing House, 2004: 1-19.]
[16] 吴琼, 聂秋生, 周荣卫, 等. 江西省山地风场风能资源储量及特征分析[J]. 自然资源学报, 2013, 28(9): 1605-1614.[WU Q, NIE Q S, ZHOU R W, et al. Analysis of wind energy resources reserves and characteristics in mountain area of Jiangxi province[J]. Journal of Natural Resources, 2013, 28(9): 1605-1614.]
[17] International Electrotechnical Commission (IEC). International standard IEC 61400-1, wind turbines-part 1: design requirements[S]. 3rd ed. Geneva, Switzerland: IEC Central Office, 2005: 1-85.
[18] 王志春, 植石群, 丁凌云. 强台风纳沙(1117)近地层风特性观测分析[J]. 应用气象学报, 2013, 24(5): 595-605.[WANG Z C, ZHI S Q, DING L Y. Observation and analysis on Qiongzhou Strait gales of severe typhoon Neasat (2011)[J]. Journal of Applied Meteorological Science, 2013, 24(5): 595-605.]
[19] 夏波文. 台风"娜基莉"影响下浦东地区近地风特性[J]. 科技视界, 2014(35): 8-9.
[20] 王旭, 黄鹏, 顾明, 等. 台风"米雷"近地层脉动风特性实测研究[J]. 土木工程学报, 2013, 46(7): 28-36.[WANG X, HUANG P, GU M, et al. Field measurement of turbulence characteristics near ground during typhoon ‘Meari'[J]. China Civil Engineering Journal, 2013, 46(7): 28-36.]
[1] 张雪婷, 陈正洪, 孙朋杰, 许杨. 湖北侧长江三峡河谷地形对风速的影响[J]. 长江流域资源与环境, 2016, 25(05): 851-858.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .