长江流域资源与环境 >> 2016, Vol. 25 >> Issue (10): 1626-1634.doi: 10.11870/cjlyzyyhj201610018

• 生态环境 • 上一篇    

丹江口库区陆地植被物候空间格局及其与海拔的响应关系

彭焕华, 李朝奎, 唐志光, 梁继   

  1. 湖南科技大学地理空间信息技术国家地方联合工程实验室, 湖南 湘潭 411201
  • 收稿日期:2016-01-27 修回日期:2016-06-14 出版日期:2016-10-20
  • 作者简介:彭焕华(1984~),男,博士,主要从事遥感及其植被变化研究.E-mail:penghh03@163.com
  • 基金资助:
    国家自然科学基金(31400409;41501070);湖南科技大学博士启动基金(E51546)

SPATIAL PATTERNS IN THE TERRESTRIAL VEGETATION PHENOLOGY OF DANJIANGKOU RESERVOIR AREA AND ITS RELATION WITH ELEVATION

PENG Huan-hua, LI Chao-kui, TANG Zhi-guang, LIANG Ji   

  1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
  • Received:2016-01-27 Revised:2016-06-14 Online:2016-10-20
  • Supported by:
    Nation Natural Science Foundation of China (31400409;41501070);Doctoral Scientific Research Foundation of Hunan University of Science and Technology (E51546)

摘要: 海拔高度变化对区域温度、降水都起着至关重要的作用,从而会对植被物候特征产生影响。以丹江口库区为研究区,分析库区植被物候随海拔变化特征,该工作的开展对进一步认识库区植物物候空间特征,进而监测库区土地覆盖变化具有重要实践意义。研究采用Savitzky-Golay滤波算法重建库区2001~2012年MODIS 16天最大合成EVI时序影像数据,对重建后的时间序列影像采用动态阈值法提取库区陆地植被关键物候特征信息,并对库区陆地植被物候特征随海拔梯度变化特征进行分析。研究结果表明,丹江口库区陆地植被生长季为4月上旬至10月上旬,南部山区林地生长季最长,而库区中部、东部耕地生长季较短。植被物候特征随海拔梯度变化呈现两个较为明显的区域,低海拔区域植被生长季开始时间(Start of Season,SOS)随海拔升高而提前,生长季结束时间(End of Season,EOS)随海拔升高而推迟,进而导致生长季长度(Length of Season,LOS)随海拔升高而延长。而在海拔较高山区,林地植被物候呈现完全相反变化趋势。受丹江口水库和人类活动的影响,丹江口库区植被分布随海拔变化呈现两个较为明显的区域。

关键词: 物候特征, 海拔梯度, 丹江口水库, MODIS时序数据

Abstract: Greater spatial variation occurred in vegetation phenology, which may be due to the spatial distribution of rainfall and temperature as a function of elevation. In this study, taking the Danjiangkou reservoir as study area, we assessed the spatial variation in key vegetation phenology parameters in relation to elevation. This work will has important practical significance on further vegetation phenological analysis, and thus is helpful for land cover change detection in the reservoir. We employed the Savitzky-Golay filter to rebuild the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index time-series dataset, and then a dynamic threshold method was used to investigate the spatial distribution of terrestrial vegetation phenology in Danjiangkou reservoir during 2001-2012. The results showed that the vegetation growing season spans from early April to early October, and the average length of growth season ranges from 100 days to 200 days. The spatial patterns of the vegetation phenology indicated that the relatively longer length of season (LOS) in the south resulted from an early start of season (SOS) and later end of season (EOS). Regression models and correlation analysis indicated that elevation is moderately related to vegetation phenology. However, the relation between vegetation phenology and elevation displayed different variation trends above or below 474 m. In the land area where elevation below 474 m, there was generally an advanced SOS, and delayed EOS of vegetation growing season, due to warmer temperatures at higher elevation. However, the elevation-phenology relationship was reversed where the elevation was above 474 m, which coincides with colder temperatures at higher elevations.

Key words: vegetation phenology, elevation gradient, Danjiangkou reservoir, MODIS vegetation index time-series data

中图分类号: 

  • Q948.11
[1] 刘国华, 傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 16(1):71-78.[LIU G H, FU B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 16(1):71-78.]
[2] CHEN X Q, HU B, YU R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China[J]. Global Change Biology, 2005, 11(7):1118-1130.
[3] PIAO S L, FANG J Y, ZHOU L M, et al. Variations in satellite-derived phenology in China's temperate vegetation[J]. Global Change Biology, 2006, 12(4):672-685.
[4] 陈效逑, 王林海.遥感物候学研究进展[J].地理科学进展, 2009, 28(1):33-40.[CHEN X Q, WANG L H. Progress in remote sensing phenological research[J]. Progress in Geography, 2009, 28(1):33-40.]
[5] 张学霞, 葛全胜, 郑景云.遥感技术在植物物候研究中的应用综述[J].地球科学进展, 2003, 18(4):534-544.[ZHANG X X, GE Q S, ZHENG J Y. Overview on the vegetation phenology using the remote sensing[J]. Advance in Earth Sciences, 2003, 18(4):534-544.]
[6] SUZUKI R, NOMAKI T, YASUNARI T. West-east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index[J]. International Journal of Biometeorology, 2003, 47(3):126-138.
[7] 余振, 孙鹏森, 刘世荣.中国东部南北样带主要植被类型物候期的变化[J].植物生态学报, 2010, 34(3):316-329.[YU Z, SUN P S, LIU S R. Phenological change of main vegetation types along a North-South Transect of Eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(3):316-329.]
[8] NEZLIN N P, KOSTIANOY A G, LI B L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region[J]. Journal of Arid Environments, 2005, 62(4):677-700.
[9] 游松财, 宋春桥, 柯灵红, 等.基于MODIS植被指数的藏北高原植被物候空间分布特征[J].生态学杂志, 2011, 30(7):1513-1520.[YOU S C, SONG C Q, KE L H, et al. Spatial distribution characteristics of vegetation phenology in northern Tibetan Plateau based on MODIS enhanced vegetation index[J]. Chinese Journal of Ecology, 2011, 30(7):1513-1520.]
[10] BROWN J C, KASTENS J H, COUTINHO A C, et al. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data[J]. Remote Sensing of Environment, 2013, 130:39-50.
[11] 顾娟, 李新, 黄春林.基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J].地球科学进展, 2010, 25(3):317-326.[GU J, LI X, HUANG C L. Land cover classification based on time-series MODIS NDVI data in Heihe River basin[J]. Advances in Earth Science, 2010, 25(3):317-326.]
[12] BOLTON D K, FRIEDL M A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics[J]. Agricultural and Forest Meteorology, 2013, 173:74-84.
[13] 张峰, 吴炳方, 刘成林, 等.利用时序植被指数监测作物物候的方法研究[J].农业工程学报, 2004, 20(1):155-159.[ZHANG F, WU B F, LIU C L, et al. Methods of monitoring crop phonological stages using time series of vegetation indicator[J]. Transactions of the CSAE, 2004, 20(1):155-159.]
[14] MENZEL A. Trends in phenological phases in Europe between 1951 and 1996[J]. International Journal of Biometeorology, 2000, 44(2):76-81.
[15] GIMÉNEZ-BENAVIDES L, ESCUDERO A, IRIONDO J M. Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient[J]. New Phytologist, 2007, 173(2):367-382.
[16] QIU B W, ZHONG M, TANG Z, et al. Spatiotemporal variability of vegetation phenology with reference to altitude and climate in the subtropical mountain and hill region, China[J]. Chinese Science Bulletin, 2013, 58(23):2883-2892.
[17] PELLERIN M, DELESTRADE A, MATHIEU G, et al. Spring tree phenology in the Alps:effects of air temperature, altitude and local topography[J]. European Journal of Forest Research, 2012, 131(6):1957-1965.
[18] CHANG C T, LIN T C, WANG S F, et al. Assessing growing season beginning and end dates and their relation to climate in Taiwan using satellite data[J]. International Journal of Remote Sensing, 2011, 32(18):5035-5058.
[19] JENERETTE G D, SCOTT R L, HUETE A R. Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semi-arid region[J]. Journal of Vegetation Science, 2010, 21(1):16-30.
[20] 胡砚霞, 黄进良, 王立辉.基于MODIS NDVI时序数据的丹江口库区物候格局研究[J].中国农业资源与区划, 2012, 33(4):25-30.[HU Y X, HUANG J L, WANG L H. Study on the phenological patterns of Danjiangkou reservoir area based on time series MODIS NDVI data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(4):25-30.]
[21] HUETE A, JUSTICE C, VAN LEEUWEN W. MODIS vegetation index (MOD13):algorithm theoretical basis document[R]. 1999. (请核对文献类型和出版信息)
[22] 李杭燕, 颉耀文, 马明国.时序NDVI数据集重建方法评价与实例研究[J].遥感技术与应用, 2009, 24(5):596-602.[LI H Y, XIE Y W, MA M G. Reconstruction of temporal NDVI dataset:evaluation and case study[J]. Remote Sensing Technology and Application, 2009, 24(5):596-602.]
[23] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[24] JONSSON P, EKLUNDH L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1824-1832.
[25] LIANG L, SCHWARTZ M D. Landscape phenology:an integrative approach to seasonal vegetation dynamics[J]. Landscape Ecology, 2009, 24(4):465-472.
[26] HWANG T, SONG C H, VOSE J M, et al. Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index[J]. Landscape Ecology, 2011, 26(4):541-556.
[1] 杨雪婷, 方一平, 邱孝枰, 朱付彪. 川西山区交通与GDP的海拔梯度性及其相关关系[J]. 长江流域资源与环境, 2017, 26(04): 530-539.
[2] 刘海, 殷杰, 陈晶, 陈晓玲. 基于遥感影像的丹江口水库水域面积动态变化与原因研究[J]. 长江流域资源与环境, 2016, 25(11): 1759-1766.
[3] 赵丽, 姜霞, 王雯雯, 王书航, 常乐, 陈俊伊. 丹江口水库表层沉积物不同形态氮的赋存特征及其生物有效性[J]. 长江流域资源与环境, 2016, 25(04): 630-637.
[4] 尹炜, 朱惇, 雷俊山, 贾海燕, 曾祉祥. 丹江口水库典型消落区不同土地利用类型土壤养分分布[J]. 长江流域资源与环境, 2015, 24(07): 1185-1191.
[5] 朱明勇, 党海山, 谭淑端, 陈正洪, 张全发. 湖北丹江口水库库区降雨侵蚀力特征[J]. 长江流域资源与环境, 2009, 18(9): 837-.
[6] 史方方, 黄, 薇. 丹江口水库对汉江中下游影响的生态学分析[J]. 长江流域资源与环境, 2009, 18(10): 954-.
[7] 陆国宾, 刘轶, 邹响林, 邹振华, 蔡涛. 丹江口水库对汉江中下游径流特性的影响[J]. 长江流域资源与环境, 2009, 18(10): 959-.
[8] 吴 勇,苏智先,方精云. 沱江源森林群落生物多样性垂直格局研究[J]. 长江流域资源与环境, 2006, 15(4): 447-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192 .
[2] 陶建平,雷海章. 长江中游平原农业水灾风险管理的制度建设[J]. 长江流域资源与环境, 2004, 13(6): 621 -625 .
[3] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 王红丽,| 刘 健 | 况雪源. 四种再分析资料与长江中下游地区降水观测资料的对比研究[J]. 长江流域资源与环境, 2008, 17(5): 703 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 王云琦,王玉杰,朱金兆. 重庆缙云山典型林分林地土壤抗蚀性分析[J]. 长江流域资源与环境, 2005, 14(6): 775 -780 .