长江流域资源与环境 >> 2016, Vol. 25 >> Issue (11): 1738-1747.doi: 10.11870/cjlyzyyhj2016011013

• 生态环境 • 上一篇    下一篇

滨海芦苇湿地土壤微生物数量对长期模拟增温的响应

李艳1,2, 高艳娜1,2, 戚志伟1,2, 姜楠1,2, 仲启铖3, 姜姗1, 王开运1,2, 张超1   

  1. 1. 华东师范大学生态与环境科学学院, 上海 200241;
    2. 上海市城市化生态过程与生态恢复重点实验室, 上海 200241;
    3. 上海市园林科学规划研究院, 上海 200232
  • 收稿日期:2016-03-09 修回日期:2016-07-19 出版日期:2016-11-20
  • 通讯作者: 王开运,E-mail:kywang@re.ecnu.edu.cn E-mail:kywang@re.ecnu.edu.cn
  • 作者简介:李艳(1989~),女,硕士研究生,主要从事湿地生态学方面的研究.E-mail:51130802023@strdent.ecnu.edu.cn
  • 基金资助:
    上海市科委项目“崇明重要生态系统监测数据管理关键技术研究”(11dz1210903);上海市城市化生态过程与生态恢复重点实验室2015年度开放基金(SHUES2015A02);国家自然科学基金项目(31500392);河口海岸学国家重点实验室开放基金(SKLECKF201411)

RESPONSES OF SOIL MICROORGANISM QUANTITY TO SIMULATED TEMPERATURE ENHANCEMENT IN THE COASTAL PHRAGMITES AUSTRALIS WETLAND

LI Yan1,2, GAO Yan-na1,2, QI Zhi-wei1,2, JIANG Nan1,2, ZHONG Qi-cheng3, JIANG Shan1, WANG Kai-yun1,2, ZHANG Chao1   

  1. 1. School of Ecological Science, East China Normal University, Shanghai 200241, China;
    2. Key Laboratory of Urban Ecology and Restoration, Shanghai 200241, China;
    3. Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
  • Received:2016-03-09 Revised:2016-07-19 Online:2016-11-20
  • Supported by:
    Shanghai Municipal Science and Technology Project, "Research on Key Technologies of Monitoring Data Management of Important Ecosystem in Chongming"(11dz1210903);2015 annual open fund of Shanghai Key Laboratory of urban ecological process and ecological restoration (SHUES2015A02);National Natural Science Foundation of China(31500392);State Key Laboratory of estuarine and Coastal Science(SKLECKF201411)

摘要: 采用开顶式生长室(Open-top chamber,OTC)连续8 a(2008~2015年)长期模拟温度升高,研究滨海芦苇湿地不同土壤深度,及两种代表植物芦苇(Phragmites australis)和白茅(Imperata cylindrical)根际、非根际土壤可培养微生物数量变化对长期增温的响应。结果表明:(1)相对于对照,长期增温导致土壤可培养微生物的数量显著增加。其中,增温对土壤表层细菌、真菌的数量影响显著,细菌在第一层的增幅最大,增加率为34.16%,真菌在第三层的增幅最大,增加了64.42%。增温对20~40 cm土层放线菌影响显著,其中在第二层达到最大增加率59.47%;(2)长期增温对芦苇根际土壤微生物的根际效应变化的影响不大,表现为各土层芦苇根际效应增温<对照,而白茅根际真菌和放线菌分别在第二层和第三层有显著差异;(3)不同的植物类型,其根际可培养微生物数量及根际效应对长期增温的响应不一致,表现为芦苇和白茅根际土壤可培养微生物数量及根际效应的增加幅度不同,这可能与植物不同类型,根际分泌物种类、数量的差异有关。

关键词: 滨海湿地, 长期增温控制, 可培养土壤微生物数量, 根际效应

Abstract: By using the method of open-top growth chambers (OTC) to simulate temperature enhancement for 8 consecutive years(2008-2015), the study studied the response of different soil layers and rhizosphere and non-rhizosphere of Phragmites australis and Imperata cylindrica culturable soil microbial quantity change to long-term simulated temperature enhancement in coastal wetland in Estern Chongming Island. The results showed that:(1) long-term warming resulted in the quantity of culturable soil microbial increased greatly in warming group than in control group. Warming had a significant effect on the quantity of bacteria, fungi in surface layer. Bacteria number reached the largest increasing rate of 34.16% in the first layer, while fungi number reached the largest increasing rate of 64.42% in the third layer. The effect of warming on actinomycetes was significant in 20-40cm layer, with the largest increasing rate of 59.47%.(2) Long-term warming had little impact on the rhizosphere effect change of reed, with a smaller effect in different layer in warming group. Rhizosphere fungi and actinomycetes of Imperata cylindrical differed obviously in second and third layer, respectively. (3) The study showed different responses of soil culturable microorganism quantity and rhizosphere effect of different plants to long-term warming. There were different increasing percentage of soil culturable microorganism quantity and rhizosphere effect between Phragmites australis and Imperata cylindrical. It might be related to the plant type, the kind and quantity of rhizosphere secretion.

Key words: coastal wetland, long-term temperature enhancement, culturable microorganism quantity, rhizosphere effect

中图分类号: 

  • S342.2
[1] ORESKES N. The scientific consensus on climate change[J]. Science, 2004, 306(5702):1686.
[2] IPCC. Climate change 2007:the physical science basis. The Fourth assessment report of working group[R]. Cambridge:Cambridge University Press, 2007.
[3] HYVÖNEN R, ÅGREN G J, LINDER S, et al. The likely impact of elevated[CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review[J]. New Phytologist, 2007, 173(3):463-480.
[4] RUSTAD L E, CAMPBELL J L, MARION G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562.
[5] TSCHERKO D, KANDELER E, JONES T H. Effect of temperature on below-ground N-dynamics in a weedy model ecosystem at ambient and elevated atmospheric CO2 levels[J]. Soil Biology and Biochemistry, 2001, 33(4/5):491-501.
[6] 王叶, 延晓冬. 全球气候变化对中国森林生态系统的影响[J]. 大气科学, 2006, 30(5):1009-1018.[WANG Y, YAN X D. The response of the forest ecosystem in china to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018.]
[7] JENKINSON D S, BROOKES P C, POWLSON D S. Measuring soil microbial biomass[J]. Soil Biology and Biochemistry, 2004, 36(1):5-7.
[8] ELSGAARD L, PETERSEN S O, DEBOSZ K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology[J]. Environmental Toxicology and Chemistry, 2001, 20(8):1656-1663.
[9] FILIP Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture, Ecosystems & Environment, 2002, 88(2):169-174.
[10] 杨玉莲. 模拟增温对高山森林土壤微生物和酶活性的影响[D]. 雅安:四川农业大学硕士学位论文, 2012.[YANG Y L. Effects of simulated warming on soil microbial and enzyme activity in the alpine forests[D]. Ya'an:Master Dissertation of Sichuan Agricultural University, 2012.]
[11] WALDROP M P, FIRESTONE M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions[J]. Biogeochemistry, 2004, 67(2):235-248.
[12] ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2008, 14(12):2898-2909.
[13] FREY S D, DRIJBER R, SMITH H, et al. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology and Biochemistry, 2008, 40(11):2904-2907.
[14] 裴希超, 许艳丽, 魏巍. 湿地生态系统土壤微生物研究进展[J]. 湿地科学, 2009, 7(2):181-186.[PEI X C, XU Y L, WEI W. A review on soil microorganisms in wetland ecosystem[J]. Wetland Science, 2009, 7(2):181-186.]
[15] 徐惠风, 刘兴土, 白军红. 长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究[J]. 水土保持学报, 2004, 18(3):115-117, 122.[XU H F, LIU X T, BAI J H. Dynamic change and environmental effects of soil microorganism in marsh soils from Carex Meyeriana wetlands in Changbai Mountain[J]. Journal of Soil Water Conservation, 2004, 18(3):115-117, 122.]
[16] MARILLEY L, HARTWIG U A, ARAGNO M. Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions[J]. Microbial Ecology, 1999, 38(1):39-49.
[17] 李娜, 张利敏, 张雪萍. 土壤微生物群落结构影响因素的探讨[J]. 哈尔滨师范大学自然科学学报, 2012, 28(6):70-74.[LI N, ZHANG L M, ZHANG X P. The discussion of affecting factors on soil microbial community structure[J]. Natural Science Journal of Harbin Normal University, 2012, 28(6):70-74.]
[18] 卫云燕, 尹华军, 刘庆, 等. 气候变暖背景下森林土壤碳循环研究进展[J]. 应用与环境生物学报, 2009, 15(6):888-894.[WEI Y Y, YIN H J, LIU Q, et al. Advance in research of forest carbon cycling under climate warming[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(6):888-894.]
[19] 张卫建, 许泉, 王绪奎, 等. 气温上升对草地土壤微生物群落结构的影响(英文)[J]. 生态学报, 2004, 24(8):1742-1747.[ZHANG W J, XU Q, WANG X K, et al. Impacts of experimental atmospheric warming on soil microbial community structure in a tallgrass prairie[J]. Acta Ecologica Sinica, 2004, 24(8):1742-1747.]
[20] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2):252-261.[ZHANG N L, GUO J X, WANG X Y, et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology, 2007, 31(2):252-261.]
[21] KENNEDY A D. Simulated climate change:are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations?[J]. Global Change Biology, 1995, 1(1):29-42.
[22] CHAPIN Ⅲ F S, SHAVER G R, GIBLIN A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3):694-711.
[23] NORBY R, EDWARDS N, RIGGS J, et al. Temperature-controlled open-top chambers for global change research[J]. Global Change Biology, 1997, 3(3):259-267.
[24] KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11(9):1440-1451.
[25] 仲启铖. 温度和水位对滨海围垦湿地碳过程的影响——以崇明东滩为例[D]. 上海:华东师范大学博士学位论文, 2014.[ZHONG Q C. The Effects of temperature and ground water on the carbon processes in coastal reclaimed wetland:a case study at Dongtan of Chongming Island[D]. Shanghai:Doctor Dissertation of East China Normal University, 2014.]
[26] 董玉琛, 郑殿升. 中国小麦遗传资源[M]. 北京:中国农业出版社, 2000.
[27] 陈华癸, 李阜棣. 土壤微生物学[M]. 上海:上海科学技术出版社, 1979:311-314.
[28] BERGNER B, JOHNSTONE J, TRESEDER K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12):1996-2004.
[29] 关阅章, 刘安田, 仲启铖, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27-34.[GUAN Y Z, LIU A T, ZHONG Q C, et al. Responses of decomposition of Phragmites australis litter to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5):27-34.]
[30] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社, 1986:110-283.
[31] 曾繁富, 赵同谦, 徐华山, 等. 滨河湿地土壤微生物数量及多样性研究[J]. 环境科学与技术, 2009, 32(10):13-18.[ZENG F F, ZHAO T Q, XU H S, et al. Number of microbes and its biodiversity in soil of riparian wetland[J]. Environmental Science & Technology, 2009, 32(10):13-18.]
[32] 成水平, 夏宜琤. 香蒲、灯心草人工湿地的研究——Ⅱ. 净化污水的空间[J]. 湖泊科学, 1998, 10(1):62-66.[CHENG S P, XIA Y C. Artificial wetland with cattail(Typha angustifilia), rush (Juncus effusus), Ⅱ:pufifying space[J]. Journal of Lake Science, 1998, 10(1):62-66.]
[33] 田呈明, 刘建军, 梁英梅, 等. 秦岭火地塘林区森林根际微生物及其土壤生化特性研究[J]. 水土保持通报, 1999, 19(2):19-22.[TIAN C M, LIU J J, LIANG Y M, et al. Rhizosphere mircroorganisms and soil bio chemical properties at Huoditang forest region of the Qinling mountains[J]. Bulletin of Soil and Water Conservation, 1999, 19(2):19-22.]
[34] HARTE J, SHAW R. Shifting dominance within a montane vegetation community:results of a climate-warming experiment[J]. Science, 1995, 267(5199):876-880.
[35] HOBBIE S E. Temperature and plant species control over litter decomposition in Alaskan tundra[J]. Ecological Monographs, 1996, 66(4):503-522.
[36] CORNELISSEN J H C, PÉREZ-HARGUINDEGUY N, DÍAZ S, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents[J]. New Phytologist, 1999, 143(1):191-200.
[37] 徐振锋, 唐正, 万川, 等. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J]. 应用生态学报, 2010, 21(11):2727-2733.[XU Z F, TANG Z, WAN C, et al. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan[J]. Chinese Journal of Applied Ecology, 2010, 21(11):2727-2733.]
[38] 张祥霖, 石盛莉, 潘根兴, 等. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 2008, 23(9):974-981.[ZHANG X L, SHI S L, PAN G X, et al. Changes in eco-chemical properties of a mangrove wetland under spartina invasion from Zhangjiangkou, Fujian, China[J]. Advances in Earth Science, 2008, 23(9):974-981.]
[1] 布乃顺, 王坤, 侯玉乐, 李钢, 齐淑娟, 方长明, 渠俊峰. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.
[2] 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾 群, 蔡述明. 武汉市水资源可持续利用评价[J]. 长江流域资源与环境, 2005, 14(4): 429 -434 .
[2] 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598 .
[3] 莫宏伟, 任志远, 谢红霞. 东南丘陵土地利用变化及驱动力研究——以衡阳市为例[J]. 长江流域资源与环境, 2004, 13(6): 551 -556 .
[4] 蒋天文,樊志宏. 大江大河从“公共资源”到“公地悲剧”演变的内在机理分析[J]. 长江流域资源与环境, 2006, 15(3): 315 -319 .
[5] 刘 渝, 杜 江, 张俊飚. 中国农业用水与经济增长的Kuznets假说及验证[J]. 长江流域资源与环境, 2008, 17(4): 593 .
[6] 王 茜, 张增祥, 易 玲, 谭文彬, 王长友. 南京城市扩展的遥感研究[J]. 长江流域资源与环境, 2007, 16(5): 554 .
[7] 夏自强. 河流健康研究进展与前瞻[J]. 长江流域资源与环境, 2008, 17(2): 252 .
[8] 孙晓霞,张继贤,刘正军. 三峡库区土地利用时序变化遥感监测与分析[J]. 长江流域资源与环境, 2008, 17(4): 557 .
[9] 张丽旭,蒋晓山,赵 敏,李志恩. 长江口洋山海域表层沉积物重金属的富积及其潜在生态风险评价[J]. 长江流域资源与环境, 2007, 16(3): 351 .
[10] 马宗伟, 许有鹏, 钟善锦. 水系分形特征对流域径流特性的影响——以赣江中上游流域为例[J]. 长江流域资源与环境, 2009, 18(2): 163 .