长江流域资源与环境 >> 2016, Vol. 25 >> Issue (11): 1748-1758.doi: 10.11870/cjlyzyyhj2016011014

• 生态环境 • 上一篇    下一篇

鄱阳湖水流运动与污染物迁移路径的粒子示踪研究

李云良1, 姚静1, 李梦凡1,2, 张奇1,3   

  1. 1. 中国科学院南京地理与湖泊研究所流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049;
    3. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022
  • 收稿日期:2016-02-25 修回日期:2016-04-14 出版日期:2016-11-20
  • 作者简介:李云良(1983~),男,助研,主要从事湖泊流域系统水文水动力过程联合模拟研究.E-mail:yunliangli@niglas.ac.cn
  • 基金资助:
    江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00);国家自然科学基金项目(41401031,41371062,41301023)

RESEARCH OF WATER FLOW AND POLLUTANT TRANSPORT PATHWAYS IN POYANG LAKE USING PARTICLE-TRACKING TECHNIQUE

LI Yun-liang1, YAO Jing1, LI Meng-fan1,2, ZHANG Qi1,3   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of the Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
  • Received:2016-02-25 Revised:2016-04-14 Online:2016-11-20
  • Supported by:
    the Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(JXS-EW-00);The National Natural Science Foundation of China(41401031,41371062,41301023)

摘要: 湖泊水流运动和污染物的迁移路径对湖泊水质起着关键作用。采用水动力和粒子示踪耦合模型,并结合野外粒子示踪实验来调查鄱阳湖洪水季节空间水流运动和污染物迁移路径。模拟结果显示,流域五河点源入湖污染物和湖区空间面源分布污染物均会沿着不同方向迅速进入湖泊主河道,在快速水流推动下逐渐向北部湖区迁移,但部分污染物因东北部湖湾区存在顺时针方向环流而发生长时间滞留和富集。野外粒子示踪实验同样表明,东北部湖湾区污染物迁移路径随着该湖区水流运动表现得复杂多变,除了可以明显观察到顺时针方向的污染物运动,还可以发现污染物向湖岸边界和湖汊迁移,最终滞留在东北部湖湾区,而康山湖区污染物在快速水流推动下主要沿主河道向西北主湖区迁移,未发现污染物进入东北部湖湾区的迹象。鄱阳湖洪水季节水流运动和污染物迁移路径具有枯水期水流-污染物传输特性。模拟得出鄱阳湖洪水期的平均换水周期约89 d,表明其可能需要近3个月时间才能彻底完成一次换水。研究成果可为大型通江湖泊“江湖关系变化”研究提供参考,对保护“一湖清水”、保障长江中下游水环境安全具有重要现实意义。

关键词: 水流运动, 污染物迁移路径, 水动力模型, 粒子示踪模型, 粒子示踪实验, 鄱阳湖

Abstract: The water flow and associated pollutant transport pathways in many lakes strongly influence the fate of various pollutants, and may thus affect the spatiotemporal variations in the general water quality of the lake. Poyang Lake, the largest freshwater lake in China, are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model MIKE 21 in conjunction with a particle-tracking model to provide a comprehensive investigation of transport behaviors in a large floodplain Poyang Lake. For the pollutant inputs both directly to the lake and catchment rivers, model simulations indicate that the lake's prevailing water flow patterns cause a unique transport pathway that primarily develops from the catchment river mouths to the downstream area along the lake's main flow channels, similar to a river-transport behavior during the dry period of the lake. Particle-tracking experiment also shows that the pollutant transport pathways appear to exhibit random pathways along with the complex water flow patterns. That is, the released particles are trapped in the eastern bay of the lake, mainly due to influence of the clock-wise gyre. While the particles adjacent to the Kangshan station are more likely to be constrained in the lake's main flow channels and further move northward during this flood period. In addition, simulation results indicate that although the average residence time of the lake is 89 days, substantially longer residence time may occur at some bays, depending on the topographically controlled flow patterns related to the gyres for local lake areas. These results demonstrate that the water flow patterns play an important role in controlling the pollutant transport pathway across the lake. The current study represents a first attempt to use a coupled model approach to provide insights into the transport behaviors for a large river-lake system, given proposals to manage the pollutant within the lake and its catchment rivers.

Key words: Water flow movement, Pollutant transport pathway, Hydrodynamic model, Particle-tracking model, Particle-tracking experiment, Poyang Lake

中图分类号: 

  • P339
[1] LEHNER B, DÖLL P. Development and validation of a global database of lakes, reservoirs and wetlands[J]. Journal of Hydrology, 2004, 296(1/4):1-22.
[2] 季振刚. 水动力学和水质-河流、湖泊及河口数值模拟[M]. 李建平, 冯立成, 赵万星, 译. 北京:海洋出版社, 2012.
[3] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266.
[4] LI X Y, ZHANG L, YANG G S, et al. Impacts of human activities and climate change on the water environment of Lake Poyang Basin, China[J]. Geoenvironmental Disasters, 2015, 2:22.
[5] WU L H, LI M, GUO Y Y, et al. Influence of three gorges project on water quality of Poyang Lake[J]. Procedia Environmental Sciences, 2011, 10:1496-1501.
[6] HUANG J, XU Q J, XI B D, et al. Effects of lake-basin morphological and hydrological characteristics on the eutrophication of shallow lakes in eastern China[J]. Journal of Great Lakes Research, 2014, 40(3):666-674.
[7] 王圣瑞. 鄱阳湖生态安全[M]. 北京:科学出版社, 2014.
[8] LUO M B, LI J Q, CAO W P, et al. Study of heavy metal speciation in branch sediments of Poyang Lake[J]. Journal of Environmental Sciences, 2008, 20(2):161-166.
[9] YUAN G L, LIU C, CHEN L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles:Poyang Lake in China[J]. Journal of Hazardous Materials, 2011, 185(1):336-345.
[10] 高桂青, 阮仁增, 欧阳球林. 鄱阳湖水质状况及变化趋势分析[J]. 南昌工程学院学报, 2010, 29(4):50-53.[GAO G Q, RUAN R Z, OUYANG Q L. Water quality status and changing trend in Poyang Lake[J]. Journal of Nanchang Institute of Technology, 2010, 29(4):50-53.]
[11] WU Z, LAI X, ZHANG L, et al. Phytoplankton chlorophyll a in Lake Poyang and its tributaries during dry, mid-dry and wet seasons:a 4-year study[J]. Knowledge and Management of Aquatic Ecosystems, 2014, 412:06.
[12] LV T G, WU C F. Study on coupling degree and optimal path between land water resources and economic development in Poyang Lake ecological economical zone[J]. International Journal of Environmental Science and Development, 2013, 4(5):569-575.
[13] 赖锡军, 姜加虎, 黄群, 等. 鄱阳湖二维水动力和水质耦合数值模拟[J]. 湖泊科学, 2011, 23(6):893-902.[LAI X J, JIANG J H, HUANG Q, et al. Two-dimensional numerical simulation of hydrodynamic and pollutant transport for Lake Poyang[J]. Journal of Lake Sciences, 2011, 23(6):893-902.]
[14] 张琍, 陈晓玲, 张媛, 等. 水文地貌分区下鄱阳湖丰水期水质空间差异及影响机制[J]. 中国环境科学, 2014, 34(10):2637-2645.[ZHANG L, CHEN X L, ZHANG Y, et al. Spatial distribution of water quality and its impacting factor in the wet season of Poyang Lake using the hydro-geomorphological partitions[J]. China Environmental Science, 2014, 34(10):2637-2645.]
[15] 杜彦良, 周怀东, 彭文启, 等. 近10年流域江湖关系变化作用下鄱阳湖水动力及水质特征模拟[J]. 环境科学学报, 2015, 35(5):1274-1284.[DU Y L, ZHOU H D, PENG W Q, et al. Modeling the impacts of the change of river-lake relationship on the hydrodynamic and water quality revolution in Poyang Lake[J]. Acta Scientiae Circumstantiae, 2015, 35(5):1274-1284.]
[16] 李云良, 张奇, 李淼, 等. 基于BP神经网络的鄱阳湖水位模拟[J]. 长江流域资源与环境, 2015, 24(2):233-240.[LI Y L, ZHANG Q, LI M, et al. Using BP neural networks for water level simulation in Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2015, 24(2):233-240.]
[17] ZHANG D W, WEI Y H, ZHANG L, et al. Distribution of heavy metals in water, suspended particulate matter and sediment of Poyang Lake, China[J]. Fresenius Environmental Bulletin, 2012, 21(7A):1910-1919.
[18] LI Y L, ZHANG Q, YAO J, et al. Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China[J]. Journal of Hydrologic Engineering, 2014, 19(3):607-616.
[19] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998.
[20] 姚静, 张奇, 李云良, 等. 定常风对鄱阳湖水动力的影响[J]. 湖泊科学, 2016, 28(1):225-236.[YAO J, ZHANG Q, LI Y L, et al. The influence of uniform winds on hydrodynamics of Lake Poyang[J]. Journal of Lake Sciences, 2016, 28(1):225-236.]
[21] FENG L, HU C M, CHEN X L, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J]. Remote Sensing of Environment, 2012, 121:80-92.
[22] LI Y L, ZHANG Q, YAO J. Investigation of residence and travel times in a large floodplain lake with complex lake-river interactions:Poyang Lake (China)[J]. Water, 2015, 7(5):1991-2012.
[23] 李云良, 张奇, 姚静, 等. 鄱阳湖湖泊流域系统水文水动力联合模拟[J]. 湖泊科学, 2013, 25(2):227-235.[LI Y L, ZHANG Q, YAO J, et al. Integrated simulation of hydrological and hydrodynamic processes for Lake Poyang-catchment system[J]. Journal of Lake Sciences, 2013, 25(2):227-235.]
[24] LI Y L, ZHANG Q, WERNER A D, et al. Investigating a complex lake-catchment-river system using artificial neural networks:Poyang Lake (China)[J]. Hydrology Research, 2015, 46(6):912-928.
[25] LI Y L, YAO J. Estimation of transport trajectory and residence time in large river-lake systems:application to Poyang Lake (China) using a combined model approach[J]. Water, 2015, 7(10):5203-5223.
[26] DHI. MIKE 21 flow model FM:particle tracking module user guide[R]. Hørsholm, Denmark:DHI Water and Environment, 2014.
[27] MILLER R L, MCPHERSON B F. Estimating estuarine flushing and residence times in Charlotte harbor, Florida. via salt balance and a box model[J]. Limnology and Oceanography, 1991, 36(3):602-612.
[28] LIU W C, CHEN W B, HSU M H. Using a three-dimensional particle-tracking model to estimate the residence time and age of water in a tidal estuary[J]. Computers & Geosciences, 2011, 37(8):1148-1161.
[29] HE C, DROPPO I. Numerical modeling of fine particle plume transport in a large lake[J]. Journal of Great Lakes Research, 2011, 37(3):411-425.
[30] MCCOMBS M P, MULLIGAN R P, BOEGMAN L, et al. Modeling surface waves and wind-driven circulation in eastern Lake Ontario during winter storms[J]. Journal of Great Lakes Research, 2014, 40(S3):130-142.
[31] SCHOEN J H, STRETCH D D, TIROK K. Wind-driven circulation patterns in a shallow estuarine lake:St Lucia, South Africa[J]. Estuarine, Coastal and Shelf Science, 2014, 146:49-59.
[32] RAZMI A M, BARRY D A, LEMMIN U, et al. Direct effects of dominant winds on residence and travel times in the wide and open lacustrine embayment:Vidy Bay (Lake Geneva, Switzerland)[J]. Aquatic Sciences, 2014, 76(S1):59-71.
[33] 唐昌新, 熊雄, 邬年华, 等. 长江倒灌对鄱阳湖水动力特征影响的数值模拟[J]. 湖泊科学, 2015, 27(4):700-710.[TANG C X, XIONG X, WU N H, et al. Simulation of the impact of the reverse flow from Yangtze River on the hydrodynamic process of Poyang Lake[J]. Journal of Lake Sciences, 2015, 27(4):700-710.]
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[5] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[6] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[7] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[8] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[9] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[10] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[11] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[12] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[13] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[14] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[15] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[4] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[5] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[6] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[7] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[10] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .