长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 134-141.doi: 10.11870/cjlyzyyhj201701016

• 生态环境 • 上一篇    下一篇

三峡库区重庆段某排污口下游污染物降解研究

祖波1,2,3, 周领1,2,3, 李国权1,3, 刘波1,3   

  1. 1. 重庆交通大学国家内河航道整治工程技术研究中心, 重庆 400074;
    2. 重庆交通大学水利水运工程教育部重点实验室, 重庆 400074;
    3. 重庆交通大学河海学院, 重庆 400074
  • 收稿日期:2016-05-11 修回日期:2016-07-06 出版日期:2017-01-20
  • 作者简介:祖波(1980~),男,教授,博士,主要从事废水处理理论与技术方面的工作.E-mail:zubo@cqjtu.edu.cn
  • 基金资助:
    重庆市研究生创新基金项目;重庆市研究生教育教学改革研究重点项目(yjg20162025)

DEGRADATION OF POLLUTANTS IN THE DOWNSTREAM OF A SEWAGE OUTFALL IN CHONGQING SECTION OF THREE GORGES RESERVOIR

ZU Bo1,2,3, ZHOU Ling1,2,3, LI Guo-quan1,3, LIU Bo1,3   

  1. 1. National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China;
    2. Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China;
    3. Chongqing Jiaotong University College of Hehai, Chongqing 400074, China
  • Received:2016-05-11 Revised:2016-07-06 Online:2017-01-20
  • Supported by:
    The graduate student innovation fund project of Chongqing;Chongqing Graduate Education Teaching Reform Research Key Project (yjg20162025)

摘要: 采用室内实验测定和野外实测相结合的方法,选取高锰酸盐指数(CODMn)、总氮(TN)、总磷(TP)、氨氮(NH3-N)为污染物监测指标,进行了各污染物降解系数计算及降解规律的分析研究。结果表明:1)在野外实测中,岸边与河流中心的各污染物降解系数有着大致相同的变化趋势,但岸边的降解系数值明显小于河流中心各断面的降解系数值,对比发现,岸边和河流中心的温度、溶解氧、pH值的差距不明显,初步可以判断流速对污染物的降解影响较显著,且流速越大,降解系数也越大;2)室内实验测定中,流速在0.4~2.0 m/s,降解系数值伴随流速的增大而逐渐增加,与野外实测法所得规律相同,也反映出流速对污染物的降解有较显著影响。基于此,应用了结构方程模型定量研究污染物降解系数与影响因子间的响应关系,结果表明:流速对污染物降解的影响较大,为污染物降解较重要的影响因子之一。最后,以结构方程模型研究结果为依据,以影响较大的因子流速为自变量,降解系数为因变量,以野外现场实测的实验数据作为基础数据,拟合得出由流速确定河流污染物降解系数的经验公式,在研究条件范围内可运用这些经验公式迅速求出污染物降解系数。

关键词: 三峡库区, 排污口下游, 污染物, 降解

Abstract: In this work we combined in-situ test and laboratory experiment methods, and selected CODMn, TN, TP and ammonia nitrogen as the pollutant indicators, to calculate the degradation coefficient of pollutants and analyzing the regularity of the degradation. The results showed that:(1) In the in-situ test, the pollutants degradation coefficients for the riparian monitoring section was significantly smaller than those for the river center monitoring section, but they had the same degradation trends. Compared with the various factors between the shore and river center, except for the velocity of shore and river center, the temperature, DO and pH had no significant difference, suggesting the velocity was the influencing factor of the pollutants degradation coefficient, and the greater of the velocity, the greater of the degradation coefficient;(2) In the laboratory experiment, the pollutant degradation coefficients gradually increased along with the increase of flow velocity(0.4~2.0 m/s), which was the same as in the field in-situ test, suggesting the velocity was the influencing factor of the pollutant degradation coefficient. Based on the results of both field in-situ test and laboratory experiment, we used structural equation modelling to quantitatively analyze the relationships between pollutant degradation coefficient and the impact factors. The results showed that the flow velocity was an important factor for the degradation coefficient. Finally, based on the quantitative results of the structural equation model, we regarded the pollutants degradation coefficient as a function of velocity, and the empirical formula was fitted by the wild field measurement data. In our study condition range, the empirical formula can be applied to quickly calculate the coefficient of pollutants degradation.

Key words: Three Gorges Reservoir, downstream of a sewage outfall, pollutants, degradation

中图分类号: 

  • X13
[1] 侯宇光, 杨龄真, 黄川友. 水环境保护[M]. 成都:成都科技大学出版社, 1990.
[2] BOSKO K. Advances in water pollution research[J]. International Association on Water Pollution Research, 1966, 45(3):153-161.
[3] 邱巍. 长江口竹园排污区COD降解系数的测试与分析[J]. 上海水利, 1996(4):33-36, 12.
[4] 杜娟, 潘婷, 谭剑聪, 等. 长江宜宾段总磷的迁移转化特征分析[C]//四川省第十一次环境监测学术交流会论文集. 成都:四川省环境科学学会, 2010:186-189.
[5] 陶威, 刘颖, 任怡然. 长江宜宾段氨氮降解系数的实验室研究[J]. 污染防治技术, 2009, 22(6):8-9, 20. [TAO W, LIU Y, REN Y R. Study on ammonia nitrogen degradation coefficient in Yibin section of Yangtze River[J]. Pollution Control Technology, 2009, 22(6):8-9, 20.]
[6] VAGNETTI R, MIANA P, FABRIS M, et al. Self-purification ability of a resurgence stream[J]. Chemosphere, 2003, 52(10):1781-1795.
[7] 倪浩清, 李福田. 水环境中生物化学时均反应率的研究[J]. 水利学报, 2010, 41(1):37-46. [NI H Q, LI F T. Investigation on biochemical time-averaged reaction rate in water environment[J]. Journal of Hydraulic Engineering, 2010, 41(1):37-46.]
[8] LEU H G, OUYANG C F, PAI T Y. Effects of flow velocity and depth on the rates of reaeration and BOD removal in a shallow open channel[J]. Water Science and Technology, 1997, 35(8):57-67.
[9] WRIGHT R M, MCDONNELL A J. In-stream deoxygenation rate prediction[J]. Journal of the Environmental Engineering Division, 1979, 105(2):323-335.
[10] NOVOTNY V, KRENKEL P A. A waste assimilative capacity model for a shallow, turbulent stream[J]. Water Research, 1975, 9(2):233-241.
[11] 刘同宦, 蔺秋生, 姚仕明. 三峡工程蓄水前后进出库水沙特性及径流量时间序列变化周期分析[J]. 四川大学学报(工程科学版), 2011, 43(1):58-63. [LIU T H, LIN Q S, YAO S M. Analysis of Three Gorges reservoir water-sediment and the period of change of temporal series of annual runoff[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(1):58-63.]
[12] 许全喜, 童辉. 近50年来长江水沙变化规律研究[J]. 水文, 2012, 32(5):38-47, 76. [XU Q X, TONG H. Characteristics of flow and sediment change in Yangtze River in recent 50 years[J]. Journal of China Hydrology, 2012, 32(5):38-47, 76.]
[13] 王蓉, 黄天寅, 吴玮. 典型城市河道氮、磷自净能力影响因素[J]. 湖泊科学, 2016, 28(1):105-113. [WANG R, HUANG T Y, WU W. Different factors on nitrogen and phosphorus self-purification ability from an urban Guandu-Huayuan river[J]. Journal of Lake Sciences, 2016, 28(1):105-113.]
[14] 李锦秀, 廖文根. 水流条件巨大变化对有机污染物降解速率影响研究[J]. 环境科学研究, 2002, 15(3):45-48. [LI J X, LIAO W G. The effect of water flow on the biodegradation of organic pollutant[J]. Research of Environmental Sciences, 2002, 15(3):45-48.]
[15] 蒲迅赤, 李克锋, 李嘉, 等. 紊动对水体中有机物降解影响的实验[J]. 中国环境科学, 1999, 19(6):485-489. [PU X C, LI K F, LI J, et al. The effect of turbulence in water body on organic compound biodegradation[J]. China environmental Science, 1999, 19(6):485-489.]
[16] 王有乐, 张建奎, 孙苑菡, 等. 黄河兰州市区段泥沙特性及水质预测研究[J]. 甘肃科技, 2006, 22(7):69-71.
[17] 吴明隆. 结构方程模型-AMOS的操作与应用[M]. 重庆:重庆大学出版社, 2009.
[18] ANDERSON J C, GERBING D W. Structural equation modeling in practice:a review and recommended two-step approach[J]. Psychological Bulletin, 1988, 103(3):411-423.
[19] HAIR J F JR, ANDERSON R E, TATHAM R L, et al. Multivariate data analysis[M]. Upper Saddle River, NJ:Prentice Hall, 1998.
[20] 韩言柱, 翟素军, 孙洪涛. 由河流流速、COD浓度估计河流COD衰减系数的经验模型[J]. 中国环境监测, 1998, 14(5):40-42. [HAN Y Z, ZHAI S J, SUN H T. An estimation model of river COD degradation coefficient from River velocity and COD density[J]. Environmental Monitoring in China, 1998, 14(5):40-42.]
[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470.
[3] 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237.
[4] 刘均卫, 刘涛. 三峡库区支流常年库区航道通航尺度研究[J]. 长江流域资源与环境, 2016, 25(11): 1711-1719.
[5] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[6] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[7] 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411.
[8] 杨杉, 吴胜军, 周文佐, 吕明权, 张德微, 黄平. 三峡库区典型土壤酸碱缓冲性能及其影响因素研究[J]. 长江流域资源与环境, 2016, 25(01): 163-170.
[9] 陈春丽, 戴星照, 曾桐辉, 弓晓峰, 刘春英, 左燕君. 城市内湖表层沉积物中有机氯农药残留特征及风险评价[J]. 长江流域资源与环境, 2015, 24(12): 2076-2084.
[10] 王林, 陈正洪, 代娟, 汤阳. 气象因子与地理因子对长江三峡库区雾的影响[J]. 长江流域资源与环境, 2015, 24(10): 1799-1804.
[11] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[12] 周明涛, 胡旭东, 张守德, 高家祯. 降雨径流面源污染年负荷预测方法的开发——以镇江古运河为例[J]. 长江流域资源与环境, 2015, 24(08): 1381-1386.
[13] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[14] 吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷. 基于SCS-CN与MUSLE模型的三峡库区小流域侵蚀产沙模拟[J]. 长江流域资源与环境, 2015, 24(05): 860-867.
[15] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[3] 简敏菲,弓晓峰,游 海,黄志中,朱 捷. 鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004, 13(6): 589 -593 .
[4] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201 -206 .
[5] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[6] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[7] 朱红波, 张安录. 我国耕地资源生态安全的时空差异分析[J]. 长江流域资源与环境, 2007, 16(6): 754 .
[8] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[9] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .