长江流域资源与环境 >> 2017, Vol. 26 >> Issue (03): 419-427.doi: 10.11870/cjlyzyyhj201703012

• 农业发展 • 上一篇    下一篇

华东某铀矿区稻米中放射性核素铀污染特征及健康风险评价

向龙1, 刘平辉1,2, 杨迎亚1   

  1. 1. 东华理工大学地球科学学院, 江西 南昌 330031;
    2. 东华理工大学核资源与环境教育部重点实验室, 江西 南昌 330031
  • 收稿日期:2016-06-27 修回日期:2016-12-13 出版日期:2017-03-20
  • 通讯作者: 刘平辉,E-mail:pinghui_liu@126.com E-mail:pinghui_liu@126.com
  • 作者简介:向龙(1990~),男,硕士研究生,主要研究方向为环境地球化学.E-mail:2636303582@qq.com
  • 基金资助:
    国家自然科学基金项目(41261081);江西省研究生创新基金项目(YC2015-S268);江西省自然科学基金(2011ZBAB203009)

CONTAMINATION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF RADIONUCLIDE URANIUM IN RICE OF A URANIUM MINE IN EAST CHINA

XIANG Long1, LIU Ping-hui1,2, YANG Ying-ya1   

  1. 1. College of Earth Sciences, East China University of Technology, Nanchang 330031, China;
    2. Key Laboratory of Nuclear Resources and Environment, Ministry of Education, East China University of Technology, Nanchang 330031, China
  • Received:2016-06-27 Revised:2016-12-13 Online:2017-03-20
  • Supported by:
    National Natural Science Foundation of Chain (Grant No.41261081);Graduate Innovation Fund Project of Jiangxi Province (YC2015-S268);Natural Science Foundation of Jiangxi Province (2011ZBAB203009)

摘要: 为查明华东某铀矿区稻米中放射性核素铀污染现状及健康风险问题,测定铀矿区和对照区共136件稻米样品中放射性核素U含量,采用单因子污染指数法评价放射性铀污染,并开展U元素健康风险评价。结果表明:(1)研究区稻米中U含量平均值为1.46 ng·g-1,各亚区稻米中U含量平均值从大到小顺序为:开采矿井区 > 水冶场区 > 含矿未采区 > 废弃矿井区 > 江西省背景值 > 对照区;(2)稻米单因子污染指数为1.25,属于轻度污染。其中,开采矿井区和水冶厂区为轻度污染,废弃矿井区和对照区未受污染;(3)首次计算提出江西省大米U元素致癌风险最大斜率系数为1.04×103(d·kg)·mg-1。各亚区稻米中成人和儿童致癌风险指数高低顺序均为:开采矿井区 > 水冶厂区 > 含矿未采区 > 废弃矿井区 > 对照区。儿童直接饮食稻米具有一定的致癌风险;开采矿井区和水冶厂区的成人存在一定致癌风险,含矿未采区和废弃矿井区以及对照区均无致癌风险。

关键词: 铀矿区, 稻米, 铀污染, 风险评价, 华东

Abstract: In order to detect the contamination and health risk of radionuclide uranium in rice from a uranium mine in East China, a total of 136 rice samples from uranium deposit area and contrast area were analyzed. The method of Single Factor Index was used for assessing rice and carcinogenic risk (CR) for health risk of radionuclide uranium. The results showed that:(1) The average uranium concentrations in rice were 1.46 ng·g-1, with an order of exploiting mine area > hydrometallurgy plant area > unexploited deposit area > abandoned mine area > the background values of Jiangxi Province > contrast area. (2) The average value of Single Factor Index (1.25) showed that the uranium contamination levels of rice in the whole uranium deposit area were mild concentration. The exploiting mine area and hydrometallurgy plant area were mild concentration and unpolluted in abandoned mine area and contrast area. (3) For the first time, the Slope factor(SF) of carcinogenic risk of rice in Jiangxi Province was 1.04×103(d·kg)·mg-1.The CR among adults and children in all sub regions both were exploiting mine area > hydrometallurgy plant area > unexploited deposit area > abandoned mine area > contrast area. By directly consuming rice, children might suffer a certain carcinogenic risk, and no risk for adults in unexploited deposit area, abandoned mine area and contrast area, a certain carcinogenic risk in exploiting mine area and hydrometallurgy plant.

Key words: uranium deposit area, rice, uranium contamination, risk assessment, East China

中图分类号: 

  • Q95
[1] 毕忠伟, 丁德馨, 段仲沅. 铀矿开采对环境的影响及治理的特殊性[J]. 安全与环境工程, 2004, 11(4):40-42.[BI Z W, DING D X, DUAN Z Y. The Specificity of impact and harnessing induced by uranium mining[J]. Safety and Environmental Engineering, 2004, 11(4):40-42.]
[2] 陈秀端, 卢新卫, 赵彩凤, 等. 西安市二环内表层土壤重金属空间分布特征[J]. 地理学报, 2011, 66(9):1281-1288.[CHEN X D, LU X W, ZHAO C F, et al. The spatial distribution of heavy metals in the urban topsoil collected from the interior area of the second ring road, Xi'an[J]. Acta Geographica Sinica, 2011, 66(9):1281-1288.]
[3] 胡冠九, 陈素兰, 蔡熹, 等. 江苏省化工园区污水处理厂污泥重金属污染及生态风险评价[J]. 长江流域资源与环境, 2015, 24(1):122-127.[HU G J, CHEN S L, CAI X, et al. Evaluation on the potential ecological risks of heavy metal pollution in sludge from the sewage treatment plants in chemical industry parks of Jiangsu Province[J]. Resources and Environment in the Yangtze Basin, 2015, 24(1):122-127.]
[4] 杨军, 陈同斌, 雷梅, 等. 北京市再生水灌溉对土壤、农作物的重金属污染风险[J]. 自然资源学报, 2011, 26(2):209-217.[YANG J, CHEN T B, LEI M, et al. Assessing the effect of irrigation with reclaimed water:the soil and crop pollution risk of heavy metals[J]. Journal of Natural Resources, 2011, 26(2):209-217.]
[5] 谢玲琳, 申志军. 放射性元素和毒性重金属污染土壤的治理探讨-以湖南雄磺矿和七一五铀矿为例[J]. 地质灾害与环境保护, 2006, 17(2):41-44, 94.
[6] 陈志东, 林清, 邓飞, 等. 广东省伴生放射性矿资源利用过程辐射水平调查[J]. 辐射防护通讯, 2002, 22(5):29-32.[CHEN Z D, LIN Q, DENG F, et al. Investigation of radiation levels in mines associated with radioactivity in Guangdong Province[J]. Radiation Protection Bulletin, 2002, 22(5):29-32.]
[7] 王卫星, 杨亚新, 王雷明, 等. 广东下庄铀矿田土壤的天然放射性研究[J]. 中国环境科学, 2005, 25(1):120-123.[WANG W X, YANG Y X, WANG L M, et al. Studies on natural radioactivity of soil in Xiazhuang uranium ore field, Guangdong[J]. China Environmental Science, 2005, 25(1):120-123.]
[8] SAÏDOU, BOCHUD F O, BAECHLER S, et al. Natural radioactivity measurements and dose calculations to the public:case of the uranium-bearing region of Poli in Cameroon[J]. Radiation Measurements, 2011, 46(2):254-260.
[9] LOURENÇO J, PEREIRA R, PINTO F, et al. Biomonitoring a human population inhabiting nearby a deactivated uranium mine[J]. Toxicology, 2013, 305:89-98.
[10] SIKLOSY Z, KERN Z, DEMENY A, et al. Speleothems and pine trees as sensitive indicators of environmental pollution-a case study of the effect of uranium-ore mining in Hungary[J]. Applied Geochemistry, 2011, 26(5):666-678.
[11] World Health Organization. Depleted uranium:sources, exposure and health effects[R]. Geneva:WHO, 2001.
[12] ABEDIN M J, FELDMANN J, MEHARG A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiology, 2002, 128(3):1120-1128.
[13] RAHMAN M A, HASEGAWA H, RAHMAN M M, et al. Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh:a glass house study[J]. Water, Air, and Soil Pollution, 2007, 185(1/4):53-61.
[14] SAHRAWAT K L. Iron toxicity in Wetland rice and the role of other nutrients[J]. Journal of Plant Nutrient, 2005, 27(8):1471-1504.
[15] 刘平辉, 魏长帅, 张淑梅, 等. 华东某铀矿区水稻土放射性核素铀污染评价[J]. 土壤通报, 2014, 45(6):1517-1521.[LIU P H, WEI C S, ZHANG S M, et al. Contamination assessment of radioactive element uranium in paddy soil of one uranium deposit area, east of China[J]. Chinese Journal of Soil Science, 2014, 45(6):1517-1521.]
[16] 向龙, 刘平辉, 张淑梅. 华东某铀矿区地表水中放射性核素铀含量特征分析[J]. 地球与环境, 2016, 44(4):455-461.[XIANG L, LIU P H, ZHANG S M. Characteristics of uranium content in surface water of a uranium mine in eastern China[J]. Earth and Environment, 2016, 44(4):455-461.]
[17] 魏长帅, 刘平辉, 袁瑾, 等. 华东某铀矿区稻米中Pb含量特征及污染研究[J]. 地质学刊, 2015, 39(4):673-677.[WEI C S, LIU P H, YUAN J, et al. Pb contents and contamination assessment of rice in a uranium mine, east China[J]. Journal of Geology, 2015, 39(4):673-677.]
[18] 魏长帅, 刘平辉, 张淑梅. 华东某铀矿区稻米中Cd含量及空间分布特征研究[J]. 安徽地质, 2016, 26(1):75-78.[WEI C S, LIU P H, ZHANG S M. Study on Cd content and features of its spatial distribution in rice in a uranium mining area in east China[J]. Geology of Anhui, 2016, 26(1):75-78.]
[19] 魏长帅, 刘平辉, 张淑梅. 华东某铀矿区稻米中Cr元素含量及其空间分布特征研究[J]. 安徽农业科学, 2014, 42(12):3709-3710.[WEI C S, LIU P H, ZHANG S M. Study on the Cr contents and spatial characteristics of rice in the area of a uranium mine, East China[J]. Journal of Anhui Agricultural Sciences, 2014, 42(12):3709-3710.]
[20] 吴锦海, 任礼华, 袁政安, 等. 上海主要食品中微量放射性元素的含量[J]. 微量元素与健康研究, 1993, 10(4):31-32.[WU J H, REN L H, YUAN Z A, et al. Contents of trace radioactive elements in main foods in Shanghai[J]. Studies of Trace Elements and Health, 1993, 10(4):31-32.]
[21] 沈体忠, 朱明祥, 肖杰. 天门市土壤-水稻系统重金属迁移积累特征及其健康风险评估[J]. 土壤通报, 2014, 45(1):221-226.[SHEN T Z, ZHU M X, XIAO J. Characteristics of migration and accumulation of heavy metals in soilrice system of Tianmen and its health risk assessment[J]. Chinese Journal of Soil Science, 2014, 45(1):221-226.]
[22] 唐荣莉, 马克明, 张育新, 等. 北京城市道路灰尘重金属污染的健康风险评价[J]. 环境科学学报, 2012, 32(8):2006-2015.[TANG R L, MA K M, ZHANG Y X, et al. Health risk assessment of heavy metals of street dust in Beijing[J]. Acta Scientiae Circumstantiae, 2012, 32(8):2006-2015.]
[23] 杨刚, 沈飞, 钟贵江, 等. 西南山地铅锌矿区耕地土壤和谷类产品重金属含量及健康风险评价[J]. 环境科学学报, 2011, 31(9):2014-2021.[YANG G, SHEN F, ZHONG G J, et al. Concentration and health risk of heavy metals in crops and soils in a zinc-lead mining area in southwest mountainous regions[J]. Acta Scientiae Circumstantiae, 2011, 31(9):2014-2021.]
[24] US EPA. Risk assessment guidance for superfund volume I human health evaluation manual (Part A)[R]. EPA/540/1-89/002, Washington, D.C.:U.S. Environmental Protection Agency, 1989:35-52.
[25] US EPA. Superfund public health evaluation manual[R]. EPA/540/1-86/060, Washington, D.C.:U.S. Environmental Protection Agency, 1986:1-52.
[26] 段海静, 蔡晓强, 阮心玲, 等. 开封市公园地表灰尘重金属污染及健康风险[J]. 环境科学, 2015, 36(8):2972-2980.[DUAN H J, CAI X Q, RUAN X L, et al. Assessment of heavy metal pollution and its health risk of surface dusts from parks of Kaifeng, China[J]. Environmental Science, 2015, 36(8):2972-2980.]
[27] 刘发欣. 区域土壤及农产品中重金属的人体健康风险评估[D]. 雅安:四川农业大学硕士学位论文, 2007.[LIU F X. The regional health risk assessment of heavy metals in the agricultural products and soil[D]. Ya'an:Master Dissertation of Sichuan Agricultural University, 2007.]
[28] 李玉清, 周雪梅, 姜国辉, 等. 含镉水灌溉对水稻产量和品质的影响[J]. 灌溉排水学报, 2012, 31(4):120-123.[LI Y Q, ZHOU X M, JIANG G H, et al. Influence of irrigation with different concentrations of Cadmium solution on rice yield and quality[J]. Journal of Irrigation and Drainage, 2012, 31(4):120-123.]
[29] 韩爱民, 蔡继红, 屠锦河, 等. 水稻重金属含量与土壤质量的关系[J]. 环境监测管理与技术, 2002, 14(3):27-28, 32.[HAN A M, CAI J H, TU J H, et al. Correlation of heavy metals contained in paddy rice and soil quality[J]. The Administration and Technique of Environmental Monitoring, 2002, 14(3):27-28, 32.]
[30] 朱晓杰. 铀矿山典型场地中铀分布特征及形成机理研究[D]. 南昌:东华理工大学硕士学位论文, 2013.[ZHU X J. The study of distribution characteristics of uranium in typical field of uranium mine and formation mechanism[D]. Nanchang:Master Dissertation of East China University of Technology, 2013.]
[31] 杨彦, 陆晓松, 李定龙. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 2014, 31(4):357-363.[YANG Y, LU X S, LI D L. Research progress of environmental health risk assessment in China[J]. Journal of Environment and Health, 2014, 31(4):357-363.]
[32] 黄德娟, 徐巍越, 周青, 等. 铀矿辐射对人体致癌病情调查报告[J]. 中国辐射卫生, 2007, 16(2):185-186.[HUANG D J, XU W Y, ZHOU Q, et al. The investigation on human cancer caused by the radiation of uranium mine[J]. Chinese Journal of Radiological Health, 2007, 16(2):185-186.]
[33] 商和平, 李洋, 张涛, 等. 畜禽粪便有机肥中Cu、Zn在不同农田土壤中的形态归趋和有效性动态变化[J]. 环境科学, 2015, 36(1):314-324.[SHANG H P, LI Y, ZHANG T, et al. Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures[J]. Environmental Science, 2015, 36(1):314-324.]
[34] SASTRE J, HERNÁNDEZ E, RODRÍGUEZ R, et al. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident[J]. Science of the Total Environment, 2004, 329(1/3):261-281
[35] 周歆, 周航, 胡淼, 等. 不同杂交水稻品种糙米中重金属Cd、Zn、As含量的差异研究[J]. 中国农学通报, 2013, 29(11):145-150.[ZHOU X, ZHOU H, HU M, et al. The difference of Cd, Zn and As accumulation in different hybrid rice cultivars[J]. Chinese Agricultural Science Bulletin, 2013, 29(11):145-150.]
[1] 王肖惠, 陈爽, 秦海旭, 管蓓. 基于事故风险源的城市环境风险分区研究——以南京市为例[J]. 长江流域资源与环境, 2016, 25(03): 453-461.
[2] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
[3] 程先富, 戴梦琴, 郝丹丹, 吴庆双. 基于情景分析的区域洪涝灾害风险评价——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(08): 1418-1424.
[4] 赵源, 黄成敏. 基于RRM的市级土地利用总体规划生态风险评价[J]. 长江流域资源与环境, 2015, 24(07): 1102-1109.
[5] 胡冠九, 孙成, 杨敏娜, 陈素兰, 李娟, 王荟, 章勇. 长江江苏段主干断面污染物健康风险评价[J]. 长江流域资源与环境, 2009, 18(8): 771-.
[6] 吕刚,王利兵,刘军,李淑芬. 全氟辛烷磺酰基化合物水生生态风险和人体健康风险评价[J]. 长江流域资源与环境, 2008, 17(6): 904-904.
[7] 胡雄星,韩中豪,张 进,夏 凡,王文华. 黄浦江表层沉积物中重金属污染的潜在生态风险评价[J]. 长江流域资源与环境, 2008, 17(1): 109-109.
[8] 欧冬妮,刘 敏,程书波,许世远,侯立军,高 磊. 河口滨岸悬浮颗粒物中多环芳烃分布与风险评价[J]. 长江流域资源与环境, 2007, 16(5): 620-620.
[9] 郁亚娟, 郭怀成, 王连生. 淮河(江苏段)水体有机污染物风险评价[J]. 长江流域资源与环境, 2005, 14(6): 740-743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[4] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[5] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[6] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 李友辉,董增川,孔琼菊. 廖坊水利工程对抚河流域生态承载力的影响分析[J]. 长江流域资源与环境, 2008, 17(1): 148 .
[9] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[10] 刘丛强 汪福顺 王雨春 王宝利. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384 .