长江流域资源与环境 >> 2017, Vol. 26 >> Issue (04): 606-614.doi: 10.11870/cjlyzyyhj201704014

• 生态环境 • 上一篇    下一篇

不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究

闵敏1,2, 林晨2,3, 熊俊峰2,4, 沈春竹3, 金志丰3, 马荣华2, 许金朵2   

  1. 1. 河南大学黄河文明与可持续发展研究中心暨黄河文明传承与现代文明建设河南省协同创新中心, 河南 开封 475001;
    2. 中国科学院流域地理学重点实验室, 中国科学院南京地理与湖泊研究所, 江苏 南京 210008;
    3. 国土资源部海岸带开发与保护重点实验室, 江苏 南京 210024;
    4. 南京信息工程大学地理与遥感学院, 江苏 南京 210044
  • 收稿日期:2016-09-06 修回日期:2016-11-30 出版日期:2017-04-20
  • 通讯作者: 林晨 E-mail:Clin@niglas.ac.cn
  • 作者简介:闵敏(1991~),女,硕士研究生,主要从事土地利用与生态环境效应研究.E-mail:15637843378@163.com
  • 基金资助:
    国家自然科学基金(41671284);国土资源部海岸带开发与保护重点实验室开放基金项目(2015CZEPK01)

RESEARCH ON SPATIO-TEMPORAL PATTERN EVOLUTIONOF NPS PARTICULATE PHOSPHORUS LOAD IN HONGZE LAKE BASIN UNDER DIFFERENT LANDUSE PATTERNS

MIN Min1,2, LIN Chen2,3, XIONG Jun-feng2,4, SHEN Chun-zhu3, JIN Zhi-feng3, MA Rong-hua2, XU Jin-duo2   

  1. 1. Key Research Institute of Yellow River Civilization and Sustainable Development&Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475001, China;
    2. Key Laboratory of Watershed Geographic Sciences/Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. The Ministry of Land and Resources Development and Protection Key Laboratory of Coastal Zone, Nanjing 210024, China;
    4. School of Geography and Remote Sensing, Nanjing University of Information Science&Technology, Nanjing 210044, China
  • Received:2016-09-06 Revised:2016-11-30 Online:2017-04-20
  • Supported by:
    National Natural Science Foundation of China (41671284);Ministry of Land and Resources Development and Protection Key Laboratory of Coastal Zone (2015CZEPK01)

摘要: 综合星地协同技术手段,定量化表征1990年以来洪泽湖流域非点源颗粒态磷负荷的时空变化特征,并差别化地探讨其与流域土地利用变化的响应关系,厘清二者的作用机制,为实现非点源磷污染的有效管控提供科技支撑。主要结论包括:(1)近20年,颗粒态磷负荷呈现“下降-上升-下降”的波动状态,1990~1996年呈下降趋势,1998~2006年保持平稳增长状态,2008年后快速下降;(2)颗粒态磷单位负荷空间差异明显,高值区集中分布在淮河支流流域(3.88 t/km2/a),低值区则主要分布在汴河流域(0.57 t/km2/a);(3)不同土地利用模式下平均颗粒态磷负荷由高到低依次为:多种地类混合的淮河支流流域(681.84 t/a)、城镇化快速增长的高松河流域(317.65 t/a)、农用地主导的维桥河流域(185.73 t/a)、湿地保护区的汴河流域(121.09 t/a)。林地、湿地等用地类型能显著减少颗粒态磷污染物的流失量,农用地和建设用地则会加剧颗粒态面源磷污染。

关键词: 土地利用, 非点源污染, 颗粒态磷负荷, 洪泽湖流域

Abstract: In this study, quantitative characterization of the spatial and temporal variation of non-point source (NPS) particulate phosphorus loads in the watershed area of the Hongze Lake since 1990 was carried out in order to find out the internal relation and the influence mechanism between non-point pollution and land use change Conclusions are as follows:1.during 1990~2012, the total loads of particulate phosphorus presented a trend of "fall-rise fall", with a gradual downward trend in 1990-1996, a stable growth state in 1996-2006, and a rapid downward trend after 2008. And the highest value was 2253.67 t/a in 2012, and the lowest value was 510.03 t/a in 1990; 2.There was significant spatial differences in the intensity of Par-P. The high value area was distributed in a variety of mixing zone of the tributaries of the Huaihe River basin, with an average Par-P intensity of of 3.88 t/km2/a. The low value area was mainly distributed in the wetland protection area of the Bian River Basin, with an average Par-P intensity of of 0.57 t/km2/a; 3. Average Par-P intensity of different land use patterns ranked as follows:Huaihe River Basin (681.84t/a), Gaosong River Basin (317.65t/a), Weiqiao River Basin (185.73t/a), Bian River Basin (121.09t/a). The corresponding land use pattern is a variety of mixed, urbanization rapid growth, the dominant land, wetland protection. The increase in the area of agricultural land and construction land will increase the phosphorus pollution, and the land types of forest land and wetland can significantly reduce the loss of particulate phosphorus. Rational land use planning has an important role in alleviating the non-point source pollution of particulate phosphorus. This study can extend the connotation of watershed NPS pollution research, and showed significant meaning for Integrated research of watershed scales, and also can provide the scientific basis for LUCC adjustment oriented to lake environment protection and management.

Key words: land use, non-point source pollution, particulate phosphorus loads, Hongze lake basin

中图分类号: 

  • X53
[1] HUNDENCHA Y,BÁRDOSST A.Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model[J].Journal of Hydrology,2004,292(1/4):281-295.
[2] NARAMNGAM S,TONG S T Y.Environmental and economic implications of various conservative agricultural practices in the Upper Little Miami River basin[J].Agricultural Water Management,2013,119:65-79.
[3] OUYANG W,HUANG H B,HAO F H,et al.Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze-thaw area[J].Journal of Hydrology,2013,495:126-134.
[4] 傅伯杰,刘世梁.长期生态研究中的若干重要问题及趋势[J].应用生态学报,2002,13(4):476-480.[FU B J,LIU S L.Problems and trends of long-term ecological research[J].Chinese Journal of Applied Ecology,2002,13(4):476-480.]
[5] DONG G T,YANG S T,GAO Y F,et al.Spatial evaluation of phosphorus retention in riparian zones using remote sensing data[J].Environmental Earth Sciences,2014,72(5):1643-1657.
[6] 陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测[J].湖泊科学,2001,13(1):63-71.[CHEN Y W,QIN B Q,GAO X Y.Prediction of blue-green algae bloom using stepwise multiple regression between algae&related environmental factors in Meiliang Bay,Lake Taihu[J].Journal of Lake Sciences,2001,13(1):63-71.]
[7] WANG X L,QIAO W,WU C Q,et al.A method coupled with remote sensing data to evaluate non-point source pollution in the Xin'anjiang catchment of China[J].Science of the Total Environment,2012,430:132-143.
[8] CATHERINE A,MOUILLOT D,MALOUFI S,et al.Projecting the impact of regional land-use change and water management policies on lake water quality:an application to periurban lakes and reservoirs[J].PLoS One,2013,8(8):e72227.
[9] YANG M,LI X Z,HU Y M,et al.Assessing effects of landscape pattern on sediment yield using sediment delivery distributed model and a landscape indicator[J].Ecological Indicators,2012,22:38-52.
[10] BORRELLI P,MÄRKER M,PANAGOS P,et al.Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines,Italy[J].Catena,2014,114:45-58.
[11] 卜坤,张树文,闫业超,等.三江平原不同流域水土流失变化特征分析[J].地理科学,2008,28(3):361-368.[BU K,ZHANG S W,YAN Y C,et al.Soil erosion change characteristic of different watersheds of Sanjiang Plain during the past 50 years[J].Scientia Geographica Sinica,2008,28(3):361-368.]
[12] 杨丽霞.太湖流域典型土地利用类型磷素输出与影响因素的研究[D].南京:中国科学院南京地理与湖泊研究所博士学位论文,2007.[YANG L X.Researches on characteristics and influencing factors of phosphorous loss in runoff in the typical land use of Taihu watershed[D].Nanjing:Doctor Dissertation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,2007.]
[13] 周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702.[ZHOU H P,GAO C.Identifying critical source areas for non-point phosphorus loss in Chaohu watershed[J].Environmental Science,2008,29(10):2696-2702.]
[14] 成杰民,宋涛,李彦.基于GIS的南四湖沿岸农业面源氮磷负荷估算研究[J].水土保持研究,2012,19(3):284-288.[CHENG J M,SONG T,LI Y.Estimation of nitrogen and phosphorus loading of agricultural non-point sources along Nansi Lake based on GIS[J].Research of Soil and Water Conservation,2012,19(3):284-288.]
[15] TANG Z,ENGEL B A,PIJANOWSKI B C,et al.Forecasting land use change and its environmental impact at a watershed scale[J].Journal of Environmental Management,2005,76(1):35-45.
[16] 李恒鹏,杨桂山,刘晓玫,等.流域土地利用变化的面源污染输出响应及管理策略-以太湖地区蠡河流域为例[J].自然灾害学报,2008,17(1):143-150.[LI H P,YANG G S,LIU X M,et al.Response of non-point pollution output to landuse change and management strategy in Lihe River watershed of Taihu Lake basin[J].Journal of Natural Disasters,2008,17(1):143-150.]
[17] 夏立忠,杨林章,吴春加,等.太湖地区典型小城镇降雨径流N P负荷空间分布的研究[J].农业环境科学学报,2003,22(3):267-270.[XIA L Z,YANG L Z,WU C J,et al.Distribution of nitrogen and phosphorus loads in runoff in a representative town in Tailake region[J].Journal of Agro-Environment Science,2003,22(3):267-270.]
[18] CHESCHEIR G M,SKAGGS R W,GILLIAM J W.Evaluation of wetland buffer areas for treatment of pumped agricultural drainage water[J].Transactions of the ASAE,1992,35(1):175-182.
[19] RAISIN G W,MITCHELL D S.The use of wetlands for the control of non-point source pollution[J].Water Science and Technology,1995,32(3):177-186.
[20] FU G B,CHEN S L,MCCOOL D K.Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE,SEDD,and ArcView GIS[J].Soil and Tillage Research,2006,85(1/2):38-49.
[21] LIN C,WU Z P,MA R H,et al.Detection of sensitive soil properties related to non-point phosphorus pollution by integrated models of SEDD and PLOAD[J].Ecological Indicators,2016,60:483-494.
[22] TAGUAS E V,MORAL C,AYUSO J L,et al.Modeling the spatial distribution of water erosion within a Spanish olive orchard microcatchment using the SEDD model[J].Geomorphology,2011,133(1/2):47-56.
[23] OUYANG W,HUANG H B,HAO F H,et al.Evaluating spatial interaction of soil property with non-point source pollution at watershed scale:the phosphorus indicator in Northeast China[J].Science of the Total Environment,2012,432:412-421.
[24] 刘涛,揣小明,陈小锋,等.江苏省西部湖泊水环境演变过程与成因分析[J].环境科学研究,2011,24(9):995-1002.[LIU T,CHUAI X M,CHEN X F,et al.Evolution of lake water environment in west Jiangsu province and analysis of causes[J].Research of Environmental Sciences,2011,24(9):995-1002.]
[25] ZHOU H P,GAO C.Assessing the risk of phosphorus loss and identifying critical source areas in the Chaohu lake watershed,China[J].Environmental Management,2011,48(5):1033-1043.
[26] SHARPLEY A N,WILLIAMS J R.EPIC-erosion/productivity impact calculator:1.Model documentation[R].Technical Bulletin-United States Department of Agriculture.Washington,DC:US Department of Agriculture Technical,1990:206-207.
[27] NASH J E,SUTCLIFFE J V.River flow forecasting through conceptual models part I-A discussion of principles[J].Journal of Hydrology,1970,10(3):282-290.
[28] 国家科技基础条件平台-国家地球系统科学数据共享平台-湖泊-流域科学数据中心[EB/OL].http://lake.geodata.cn.[Lake-watershed science data center,national earth system science data sharing infrastructure,national science & technology infrastructure of China[EB/OL].http://lake.geodata.cn.]
[29] 李波,濮培民.淮河流域及洪泽湖水质的演变趋势分析[J].长江流域资源与环境,2003,12(1):67-73.[LI B,PU P M.Study on the evolution tendency of water quality in Huai River basin and Hongze Lake[J].Resources and Environment in the Yangtze Basin,2003,12(1):67-73.]
[30] 李为,都雪,林明利,等.基于PCA和SOM网络的洪泽湖水质时空变化特征分析[J].长江流域资源与环境,2013,22(12):1593-1601.[LI W,DU X,LIN M L,et al.Spatial-temporal variation characteristics of water quality in Hongze Lake based on PCA and SOM[J].Resources and Environment in the Yangtze Basin,2013,22(12):1593-1601.]
[1] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[2] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[3] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[4] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[5] 付永虎, 刘黎明, 任国平, 刘朝旭, 郭赟, 叶津炜. 平原河网地区非点源污染风险差异化分区防控研究[J]. 长江流域资源与环境, 2017, 26(05): 713-722.
[6] 虎陈霞, 郭旭东, 连纲, 张忠明. 长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J]. 长江流域资源与环境, 2017, 26(03): 333-340.
[7] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[8] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[9] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
[10] 戴刘冬, 周锐, 张凤娥, 王新军. 城市土地利用对居民通勤碳排放的影响研究[J]. 长江流域资源与环境, 2016, 25(Z1): 68-77.
[11] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[12] 徐磊, 董捷, 张安录. 湖北省土地利用减碳增效系统仿真及结构优化研究[J]. 长江流域资源与环境, 2016, 25(10): 1528-1536.
[13] 毕国华, 杨庆媛, 王兆林, 匡垚瑶, 慕卫东. 丘陵山区都市边缘农村居民点土地利用空间特征分析——以重庆两江新区为例[J]. 长江流域资源与环境, 2016, 25(10): 1555-1565.
[14] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
[15] 何华春, 周汝佳. 基于景观格局的盐城海岸带土地利用时空变化分析[J]. 长江流域资源与环境, 2016, 25(08): 1191-1199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330 -334 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[6] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[7] 徐天宝, 彭静, 李翀. 葛洲坝水利工程对长江中游生态水文特征的影响[J]. 长江流域资源与环境, 2007, 16(1): 72 -75 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 王红娟,姜加虎,黄 群. 东洞庭湖湿地景观变化研究[J]. 长江流域资源与环境, 2007, 16(6): 732 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .