长江流域资源与环境 >> 2018, Vol. 27 >> Issue (09): 2090-2100.doi: 10.11870/cjlyzyyhj201809019

• 自然资源 • 上一篇    下一篇

基于MIKE21和灰色模式识别模型的洪湖水质模拟与评价

张婷1,王学雷2*,耿军军3,班璇2,杨超2,吕晓蓉2   

  1. (1.湖北科技学院资源环境科学与工程学院,湖北 咸宁 437100; 2.中国科学院测量与地球物理研究所环境与
    灾害评估湖北省重点实验室,湖北 武汉 430077; 3.武汉大学资源与环境科学学院,湖北 武汉 430072)
  • 出版日期:2018-09-20 发布日期:2018-11-09

Application of the MIKE21 and GreyMode Identification Model to Monitor and Assess Water Quality for Honghu Lake

ZHANG Ting, WANG Xuelei, GENG Junjun, BAN Xuan, YANG Chao , LU Xiaorong   

  1. (1. Hubei University of Science and Technology, School of Resources Environmental Science and Engineering,
    Xianning 437100, China; 2.Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Hubei Key
     Laboratory of Environment and Disaster Monitoring and Evaluation, Wuhan 430077, China; 3. Wuhan University,
    School of Resource and Environmental Sciences, Wuhan 430072, China)
  • Online:2018-09-20 Published:2018-11-09

摘要:

认识自然和人为因素驱动下湖泊水环境质量的响应和变化规律,有利于更精确地进行湖泊水质模拟和评价。运用二维水质模型和灰色模式识别模型评价了不同污染源削减方案对洪湖水质的影响。基于2012年实测地形、水文、气象、水质和污染源定量输入,建立了洪湖二维水动力和水质耦合模型。模拟结果显示:水位率定和验证的均方根误差分别为0.10和0.08 m,总氮、总磷、铵态氮和高锰酸盐指数的率定误差分别为0.171、0.009、0.110和0.627 mg/L,验证误差分别为0.191、0.020、0.079和0.689 mg/L,水动力模型和水质模型的模拟结果满足精度要求。不同管理措施方案下洪湖水质的恢复效果比较显示,洪湖蓝田和下新河入水口各污染物指标浓度减少50%方案下,水质的恢复效果最好,全湖总氮、总磷、铵态氮和高锰酸盐指数均值减少率分别为37.2%、35.1%、37.3%和21.3%,全湖Ⅴ类水质水域基本不存在,全湖90%的区域水体水质综合等级达到Ⅲ类。影响洪湖水质恶化的驱动因子中,关键因素是径流入湖所携带的四湖流域上游地区的非点源污染物。应大力控制上游地区的非点源污染,积极开展洪湖东北部和西北部的湿地水生植被生态修复工程,恢复水体的截污和自净能力。

 

Abstract: Studying the change and response of lake water quality driven by natural and human factors can provide a scientific basis for water environmental management. This study accessed the effects of different scenarios of pollutions reduction on water quality using the combination methods of twodimension water quality numerical modelling and greymode identification accessing. Based on measured topography, hydrological, meteorological data and water quality in 2012, as well as the quantitative results of pollution resources, a twodimensional hydrodynamic and water quality coupling model of Honghu Lake was established. The pollution resources were generalized to surface runoff, aquaculture activities and atmospheric deposition. The results showed that, during the model calibration and validation periods, the average water level RMSEs were respectively 0.10 m and 0.08 m, the concentration RMSEs of total nitrogen, total phosphorus, ammonianitrogen and permanganate index were respectively 0.171 mg/L, 0.009 mg/L, 0.110 mg/L, 0.627 mg/L and 0.191 mg/L, 0.020 mg/L, 0.079 mg /L, 0.689 mg/L. The simulation results meet the accuracy requirements of water quality model. The water quality change under different scenarios of load reduction revealed that under 50% reduction of inflow loads, the decreasing rates of total nitrogen, total phosphorus, ammonianitrogen and permanganate index concentration were largest, which were respectively 37.2%, 35.1%, 37.3% and 37.2%. The comprehensive water quality index were decreased from the baseline (2.84) to 2.44. The areas of grade V water quality did not exist. The percentage in areas of grade IV water quality decreased from 15% (baseline) to 10%. The areas of grade III water quality accounted for 90% of the whole lake area. it concluded that the water quality deterioration primarily was owing to nonpoint pollution from upstream Sihu watershed brought by runoff. We should vigorously develop nonpoint source pollution control in the upstream and carry out the ecological restoration in the northeast and northwest of Honghu Lake.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33 .
[2] 万荣荣, 杨桂山. 太湖流域土地利用变化及其空间分异特征研究[J]. 长江流域资源与环境, 2005, 14(3): 298 -302 .
[3] 李崇明,黄真理,张晟,常剑波. 三峡水库藻类“水华”预测[J]. 长江流域资源与环境, 2007, 16(1): 1 -6 .
[4] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192 .
[5] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[6] 原 峰,姜 彤. 荆江分洪区土地利用时空动态变化研究[J]. 长江流域资源与环境, 2005, 14(5): 649 -654 .
[7] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[8] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[9] 王宜虎,崔 旭,陈 雯. 南京市经济发展与环境污染关系的实证研究[J]. 长江流域资源与环境, 2006, 15(2): 142 -146 .
[10] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .