长江流域资源与环境 >> 2021, Vol. 30 >> Issue (3): 758-769.doi: 10.11870/cjlyzyyhj202103022

• 自然灾害 • 上一篇    

秦岭—淮河南北干旱热浪耦合风险区识别及其影响因素

张玉凤, 李双双*, 延军平   

  1. (陕西师范大学地理科学与旅游学院, 陕西 西安 710119)
  • 出版日期:2021-03-20 发布日期:2021-04-07

Identification of Concurrent Heat Waves and Droughts Risk and Its Influencing Factors in North and South of Qinling-Huaihe Region

ZHANG Yu-feng, LI Shuang-shuang, YAN Jun-ping   

  1. (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119,  China)
  • Online:2021-03-20 Published:2021-04-07

摘要: 综合考虑干旱热浪耦合危险性、暴露性和脆弱性,构建干旱热浪耦合风险评价框架,对秦岭—淮河南北干旱热浪耦合风险区进行识别,探讨不同指标要素与风险空间格局的响应关系。结果表明:(1)1960~2018年秦岭—淮河南北干旱热浪具有群聚群发性。其中,耦合频发期为:20世纪70年代末~80年代初,空间集聚中心主要分布在淮河平原、长江中下游东部、川东丘陵以及巫山山区,而20世纪90年代后干旱热浪耦合逐渐减弱;(2)秦岭—淮河南北干旱热浪耦合风险具有空间分异特征,排名前30位高风险区,有70%的城市位于长江中下游、淮河平原,30%位于四川盆地东部,上述城市人口密集,干旱热浪耦合暴露性强,使得区域面临干旱热浪耦合风险较高;(3)路径分析验证干旱热浪耦合风险因素关系表明:秦岭—淮河南北危险性、暴露性与风险呈反向关系,说明区域干旱热浪高暴露、高致灾危险区,因社会应对灾害能力较强,可在一定程度缓解系统的受灾风险。

Abstract: The interaction of multi-hazards has attracted much attention in recent years, especially the concurrent of heat waves and droughts, that improved the impacts on the agriculture, ecosystem and human daily life. In this study, based on meteorological data from 197 meteorological stations for the period of 1960-2018, we constructed a conceptual framework including the concurrent heat waves and droughts hazard, exposure, and vulnerability. Meanwhile, the spatiotemporal variation of the concurrent heat waves and droughts was analyzed in north and south of Qinling-Huaihe region. More importantly, we used path analysis to investigate the relationship between hazard, exposure and vulnerability based on socioeconomic and demographic data. The results showed, (1) during 1960 to 2018, the concurrent heat waves and droughts presented the spatiotemporal cluster by using bipartite networks in study region. In detailed, one distinct phase was identified that the concurrency of heat waves and droughts is significant from 1970s to the early 1980s, and there are three spatial cluster regions, i.e. Huaihe Plain, the middle and lower reaches of the Yangtze River, Hill areas of eastern Sichuan and Wushan Mountains in central China. It should be noted that the concurrency for heat waves and droughts weakened gradually after 1990s; (2) The risk of concurrent of heat waves and droughts showed a significant pattern of spatial variation. About 70% of the top 30 cities with the greatest risk located in Huaihe Plain and the middle and lower reaches of the Yangtze River and 30% covered in Sichuan Basin, led by the dense population and economy, which meant greater exposure and the higher risk of the concurrent heat waves and droughts hazard; (3)In the term of influence factors, the path analysis confirmed that the negative relationship between susceptibility and coping capacity, and further verified that hazard, exposure correlated negatively with concurrent risk. These results implied that greater coping capacity was significant driving factor of lower concurrent risk in area with the more concurrent of heat waves and droughts and exposure.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 黄亮,张国森. 长江徐六泾黑碳的季节变化及环境意义[J]. 长江流域资源与环境, 2014, 23(09): 1202 .
[4] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[5] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[6] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[7] 胡博亭, 柳江, 王文玲, 冯彦. 基于洪旱灾害的雅鲁藏布江流域水资源脆弱性时空差异分析[J]. 长江流域资源与环境, 2019, 28(05): 1092 -1101 .
[8] 程俊翔, 徐力刚, 姜加虎, 朱乾德, 于丹丹. 洞庭湖出口径流变化及对生态系统的影响[J]. 长江流域资源与环境, 2019, 28(05): 1225 -1234 .
[9] 刘 松, 佘敦先, 张利平, 丁凯熙, 郭梦瑶, 陈森林. 基于Morris和Sobol的水文模型参数敏感性分析[J]. 长江流域资源与环境, 2019, 28(06): 1296 -1303 .
[10] 曹艳敏, 毛德华, 邓美容, 张京亚. 日调节电站库区生态水文情势评价——以湘江干流衡阳站为例[J]. 长江流域资源与环境, 2019, 28(07): 1602 -1611 .