长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1142-1149.doi: 10.11870/cjlyzyyhj201507009

• 自然资源 • 上一篇    下一篇

气温对长江上游巴塘站年径流的影响分析

李凌琪1, 熊立华1,2, 江聪1, 张洪刚3   

  1. 1. 武汉大学 水资源与水电工程科学国家重点实验室, 湖北 武汉 430072;
    2. 武汉大学水资源安全保障 湖北省协同创新中心, 湖北 武汉 430072;
    3. 长江水利委员会水文局, 湖北 武汉 430010
  • 收稿日期:2014-07-29 修回日期:2014-08-28 出版日期:2015-07-20
  • 作者简介:李凌琪(1990~),女,硕士研究生,主要从事水文水资源方面研究.E-mail:shiyipt77@126.com
  • 基金资助:
    国家自然科学基金重大项目(51190094);国家自然科学基金项目(51479139)

IMPACT OF AIR TEMPERATURE ON ANNUAL RUNOFF OF BATANG STATION IN THE HEADSTREAM OF YANGTZE RIVER

LI Ling-qi1, XIONG Li-hua1,2, JIANG Cong1, ZHANG Hong-gang3   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
    2. Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, Wuhan 430072, China;
    3. Bureau of Hydrology, Yangtze River Water Resources Commission, Wuhan 430010, China
  • Received:2014-07-29 Revised:2014-08-28 Online:2015-07-20

摘要: 为了深入分析气温对长江上游年径流的影响和解释青藏高原冰川融水再冻结现象的物理机制,采用对位置、尺度、形状的广义可加模型(简称GAMLSS)建立控制因素降水、气温、ATD与年径流量之间的关系。在GAMLSS框架下,气温影响因子可以用两种形式表示,一种是直接采用气温,另一种是采取ATD指数(累积气温亏损值)。通过比较不同解释变量组合下的GAMLSS模型,进而研究气温对长江上游巴塘站1960~2012年的年径流影响。结果表明:基于ATD的回归模型,在年径流序列服从对数正态分布假设的条件下拟合效果最优。与气温值相比,ATD指数能更有效地解释长江上游径流变化的特征和冰川产流的物理机制。研究成果对长江上游年径流预报、高原气候下的产流特征分析具有理论意义。

关键词: 长江上游, 年径流, ATD, 气温, GAMLSS

Abstract: To analyze the impacts of air temperature on annual runoff in the headstream of Yangtze River and explain the physical mechanism behind the glacier melt from Qinghai-Tibetan Plateau, the Generalized Additive Model of Location, Scale and Shape (GAMLSS) is employed to detect the non-stationarity of the annual runoff series (1960-2012) and to quantify the relationships of both the mean and variance of the annual runoff variable to physical factors such as precipitation and air temperature. In the GAMLSS model, the impact of air temperature can be represented in two different ways, one is to directly use the annual average temperature as a predictor and the other way is to use the index of accumulated temperature deficit (ATD) as a predictor, so two kinds of regression models are established in this paper under four different distribution assumptions for annual runoff variable. By comparing the efficiencies of the two kinds of GAMLSS models with different combinations of predictors using a variety of criteria such as the generalized Akaike information criterion, both normal QQ and worm plots of the residuals, Filliben correlation coefficient and kernel density estimation, we investigated the impacts of air temperature on annual runoff in the upper Yangtze River. We found that annual runoff series from the Batang station generally had an unstable trend, with a slight decline during the period 1960-1988 followed by a rise for over twenty years later, while annual precipitation and air temperature values showed continuous, steady and slow increasing trends. The fact that there existed a decline in annual runoff for nearly 30 years can be partly explained by the phenomenon called refreezing of meltwater of glaciers. The fitted model with ATD as a predictor under the lognormal distribution assumption for annual runoff performed better than the direct use of air temperature as the predictor in estimating annual runoff values. The ATD series, as an indirect reflection of heat energy deficit, showed roughly the same change trend as annual runoff series. All the above findings indicate that annual runoff series of the Batang station over the period 1960-2012 might be more strongly influenced by the proposed ATD index rather than directly by the air temperature, suggesting that the ATD index could more effectively explain the physical mechanism of glacial runoff generation that is a significant component of the total runoff in cold regions and hence better describe the temporal characteristics of annual runoff in the upper Yangtze river. In summary, our study may be helpful in predicting annual runoff and understanding the mechanism of runoff generation under the plateau climate.

Key words: the upper Yangtze River, annual runoff, ATD, air temperature, GAMLSS

中图分类号: 

  • P333
[1] 杨桂山,朱春全,蒋志刚.长江保护与发展报告(2011)[M].武汉:长江出版社,2011.
[2] 李 林,王振宇,秦宁生,等.长江上游径流量变化及其与影响因子关系分析[J].自然资源学报:2004,19(6):694-700.
[3] 曹建廷,秦大河,罗 勇,等.长江源区1956~2000年径流量变化分析[J].水科学进展:2007,18(1):29-33.
[4] 夏 军,王渺林.长江上游流域径流变化与分布式水文模拟[J].资源科学,2008,30(7):962-967.
[5] 王顺久.岷江径流变化特征及其对青藏高原气候变化的响应[J].长江流域资源与环境,2010,19(8):933-939.
[6] XIONG L H,YU K X,ZHANG H G,et al.Annual runoff change in the headstream of Yangtze River and its relation to precipitation and air temperature[J].Hydrology Research,2013,44(5):850-874.
[7] 薛 毅,陈立萍.统计建模与R软件[M].北京:清华大学出版社,2006.
[8] 江 聪,熊立华.基于GAMLSS模型的宜昌站年径流序列趋势分析[J].地理学报,2012,67(11):1505-1514.
[9] VILLARINI G,SMITH J A,SERINALDI F,et al.Flood frequency analysis for nonstationary annual peak records in an urban drainage basin[J].Advances in Water Resources,2009,32:1255-1266.
[10] VILLARINI G,SMITH J A,NAPOLITANO F.Nonstationary modeling of a long record of rainfall and temperature over Rome[J].Advances in Water Resources,2010,33:1256-1267.
[11] VILLARINI G,SMITH J A,SERINALDI F,et al.Analyses of extreme flooding in Austria over the period 1951-2006[J].International Journal of Climatology,2012,32(8):1178-1192.
[12] MANN H B.Nonparametric tests against trend[J].Econometrica,1945,13:245-259.
[13] KENDALL M G.Rank correlation methods[M].4th edition.London,UK:Griffin,1975.
[14] RIGBY R A,STASINOPOULOS D M.Generalized additive models for location,scale and shape[J].Journal of the Royal Statistical Society:Series C (Applied Statistics),2005,54:507-554.
[15] R DEVELOPMENT CORE TEAM.R:a language and environment for statistical computing[M].Vienna,Austria:R Foundation for Statistical Computing,2008.
[16] STASINOPOULOS D M,RIGBY R A,AKANTZILIOTO C.GAMLSS:generalized additive models for location,scale and shape[CP].R Package Version 1.5-0,2007.
[17] AKAIKE H.A new look at the statistical model identification[J].IEEE Transactions on Automatic Control,1974,19(6):716-723.
[18] SCHWARZ G.Estimating the dimension of a model[J].The Annals of Statistics,1978,6(2):461-464.
[19] DUNN P K,SMYTH G K.Randomized quantile residuals[J].J Comput Graph Statist,1996,5(3):236-244.
[20] LOONEY S W,GULLEDGE,Jr T R.Use of the correlation coefficient with normal probability plots[J].The American Statistician,1985,39(1):75-79.
[21] 郭生练.设计洪水研究进展与评价[M].北京:中国水利水电出版社,2005.
[22] FILLIBEN J J.The probability plot correlation coefficient test for normality[J].Technometrics,1975,17(1):111-117.
[23] VAN BUUREN S,FREDRIKS M.Worm plot:a simple diagnostic device for modeling growth reference curves[J].Statistics in Medicine,2001,20(8):1259-1277.
[24] PARZEN E.On the estimation of a probability density function and the mode[J].The Annals of Mathematical Statistics,1962,33(3):1065-1076.
[1] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[2] 祁海霞, 王晓玲, 李银娥, 白永清. 长江上游中小洪水天气学机理分析及致洪特征[J]. 长江流域资源与环境, 2016, 25(Z1): 83-94.
[3] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[4] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[5] 杨晓静, 徐宗学, 左德鹏, 赵焕. 云南省1958~2013年极端气温时空变化特征分析[J]. 长江流域资源与环境, 2016, 25(03): 523-536.
[6] 陈璇, 张萍萍, 田刚, 董良鹏, 韦惠红, 徐卫立, 岳岩裕, 车钦. 长江上游流域大洪水天气分型特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2142-2152.
[7] 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612.
[8] 祁栋林, 李晓东, 肖宏斌, 周万福, 苏文将, 胡爱军, 李璠. 近50 a三江源地区蒸发量的变化特征及其影响因子分析[J]. 长江流域资源与环境, 2015, 24(09): 1613-1620.
[9] 段辛斌, 田辉伍, 高天珩, 刘绍平, 王珂, 陈大庆. 金沙江一期工程蓄水前长江上游产漂流性卵鱼类产卵场现状[J]. 长江流域资源与环境, 2015, 24(08): 1358-1365.
[10] 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132.
[11] 倪敏莉, 张佳华, 申双和. 南京市不同时间尺度温度变化特征[J]. 长江流域资源与环境, 2010, 19(2): 169-.
[12] 许全喜| 张小峰| 袁, 晶. 长江上游河流输沙量时间序列跃变现象研究[J]. 长江流域资源与环境, 2009, 18(6): 555-.
[13] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[14] 李 兰 陈正洪 周月华 史瑞琴 万素琴 郭广芬. 湖北省2008年初低温雨雪冰冻过程气候特征分析[J]. 长江流域资源与环境, 2009, 18(3): 291-295.
[15] 段辛斌,刘绍平,熊飞,陈大庆,, 杨如恒, 池成贵5, 穆天荣6. 长江上游干流春季禁渔前后三年渔获物结构和生物多样性分析[J]. 长江流域资源与环境, 2008, 17(6): 878-878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[5] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .