长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 523-536.doi: 10.11870/cjlyzyyhj201603020

• 生态环境 • 上一篇    

云南省1958~2013年极端气温时空变化特征分析

杨晓静1, 徐宗学1,2, 左德鹏1,2, 赵焕1   

  1. 1. 北京师范大学水科学研究院, 水沙科学教育部重点实验室, 北京 100875;
    2. 全球变化协同研究中心, 北京 100875
  • 收稿日期:2015-06-10 修回日期:2015-08-31 出版日期:2016-03-20
  • 作者简介:杨晓静(1988~),女,博士研究生,主要从事水文学及水资源方面的研究. E-mail: yxj@mail.bnu.edu.cn
  • 基金资助:
    中国工程院重大咨询项目"我国旱涝事件集合应对战略研究"(2012-ZD-13)

SPATIOTEMPORAL CHARACTERISTICS OF EXTREME AIR TEMPERATURE IN YUNNAN PROVINCE DURING 1958-2013

YANG Xiao-jing1, XU Zong-xue1,2, ZUO De-peng1,2, ZHAO Huan1   

  1. 1. Key laboratory of Water and Sediment Sciences, Ministry of EducationCollege of Water Sciences, Beijing Normal University, Beijing 100875, China;
    2. Joint Center for Global Change Studies, Beijing 100875, China
  • Received:2015-06-10 Revised:2015-08-31 Online:2016-03-20
  • Supported by:
    Major Consulting Project of Chinese Academy ofEngineering(2012-ZD-13)

摘要: 利用云南省1958~2013年28个气象站点逐日最高气温、最低气温数据,计算10个极端气温指数。基于Mann-Kendall(M-K)方法分析极端气温指数年代/际、季节变化趋势,并利用反距离权重法探讨极端气温空间分布特征。为进一步明确未来各极端气温指数年/季节可能存在的变化趋势,利用R/S分析方法,估算极端气温指数的Hurst指数。分析结果表明:(1)时间上,极端高温事件发生频率及持续时间均显著大于低温事件,而最低气温增温幅度高于最高气温。且年/季节最高气温与最低气温均在1980年代后呈现更为显著的增温趋势,四季中冬季最高、最低温度增温幅度均最大;(2)空间上,极端高温事件高发地区为滇西南与滇中地区,而极端低温事件高发地区为滇西北及滇东北地区;(3)全省未来最高气温(TMAX)与最低气温均呈增加趋势,且TMIN增加趋势持续性更为明显,增温趋势持续性最强的地区为:昆明、景洪、腾冲、香格里拉及昭通TMIN。

关键词: 极端气温, 趋势, 分布, 云南

Abstract: In order to investigate changes of extreme air temperature in Yunnan Province, southwestern China, 10 extreme indices were employed. Those indices were estimated based on observed daily maximum and minimum air temperature at 28 meteorological stations from 1958 to 2013. The tendency of those indices was detected by using the Mann-Kendal test method. In addition, the inverse distance weight method was used to analyze the spatial distribution of those annual and seasonal indices. Then, the changes of annual and seasonal extreme air temperature indices in the future were estimated by using the R/S method. The results showed that the frequency and duration of extreme high-temperature events were obviously higher than those of extreme low-temperature events while the increasing range of the minimum air temperature was comparatively greater than that of maximum air temperature. The annual and seasonal results of extreme air temperature presented a significantly upward trend, especially after the 1980s. Both extreme maximum and minimum air temperature in winter presented more remarkably increasing range comparing with those in other seasons; Southwestern and central region of Yunnan Province showed higher frequency and duration of extreme high temperature events than other regions. Meanwhile, the higher frequency and duration of extreme low temperature events was detected in northwestern and northeastern regions. High and low temperatures show a consistently increasing trend all over Yunnan Province in the future despite the persistence of the tendency shows diversity of spatial distribution. The persistently increasing of minimum air temperature is more obvious than maximum air temperature at annual and seasonal scales. It was noted that the most continuous increasing trend of air temperature were detected in Kunming, Jinghong, Tengchong, Shangri-La and Zhaotong cities.

Key words: Extreme air temperature, tendency, distribution, Yunnan Province

中图分类号: 

  • P339
[1] CHEN D, WALTHER A, MOBERG A, et al. European Trend Atlas of Extreme Temperature and Precipitation Records[M]. Springer, 2014.
[2] LEE W V. Historical global analysis of occurrences and human casualty of extreme temperature events (ETEs)[J]. Natural Hazards, 2014, 70(2):1453-1505.
[3] 徐玉貌, 刘红年, 徐桂玉. 大气科学概论[M]. 2版. 南京:南京大学出版社, 2013.
[4] BROWN S J, CAESAR J, FERRO C A T. Global changes in extreme daily temperature since 1950[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D5):D05115.
[5] ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research-Atmospheres, 2006, 111(D5):D05109.
[6] 任国玉. 中国区域极端天气气候事件变化研究[M]. 北京:气象出版社, 2012.
[7] 周雅清, 任国玉. 中国大陆1956~2008年极端气温事件变化特征分析[J]. 气候与环境研究, 2010, 15(4):405-417.[ZHOU Y Q, REN G Y. Variation characteristics of extreme temperature indices in mainland China during 1956-2008[J]. Climatic and Environmental Research, 2010, 15(4):405-417.]
[8] 王冀. 中国地区极端气温变化的模拟评估及其未来情景预估[D]. 南京:南京信息工程大学博士学位论文, 2008.[WANG J. Projection and evaluation of the extreme temperature events simulation over China[D]. Nanjing:Doctor Dissertation of Nanjing University of Information Science & Technology, 2008.]
[9] 王冀, 江志红, 张海东, 等. 1957-2000年东北地区春季极端气温变化及其与北极涛动的关系[J]. 气候变化研究进展, 2007, 3(1):41-45.[WANG J, JIANG Z H, ZHANG H D, et al. Variations of spring extreme temperature indexes in northeast China and their relationships with the arctic oscillation[J]. Advances in Climate Change Research, 2007, 3(1):41-45.]
[10] 汪宝龙, 张明军, 魏军林, 等. 西北地区近50a气温和降水极端事件的变化特征[J]. 自然资源学报, 2012, 27(10):1720-1733.[WANG B L, ZHANG M J, WEI J L, et al. The change in extreme events of temperature and precipitation over northwest China in recent 50 years[J]. Journal of Natural Resources, 2012, 27(10):1720-1733.]
[11] 王琼, 张明军, 王圣杰, 等. 1962-2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5):611-625.[WANG Q, ZHANG M J, WANG S J, et al. Extreme temperature events in Yangtze River Basin during 1962-2011[J]. Acta Geographica Sinica, 2013, 68(5):611-625.]
[12] 杜军, 路红亚, 建军. 1961-2010年西藏极端气温事件的时空变化[J]. 地理学报, 2013, 68(9):1269-1280.[DU J, LU H Y, JIAN J. Variations of extreme air temperature events over Tibet from 1961 to 2010[J]. Acta Geographica Sinica, 2013, 68(9):1269-1280.]
[13] 王晓, 李佳秀, 石红彦, 等. 1960-2011年云南省极端气温事件的时空分布及趋势预测[J]. 资源科学, 2014, 36(9):1816-1824.[WANG X, LI J X, SHI H Y, et al. The temporal-spatial distribution and prediction of extreme temperature events in Yunnan Province from 1960 to 2011[J]. Resources Science, 2014, 36(9):1816-1824.]
[14] 陈艳, 段旭, 董文杰, 等. 云南不同气候带极端气温变化趋势[J]. 气象科技, 2013, 41(1):126-130.[CHEN Y, DUAN X, DONG W J, et al. Trends of extreme temperature under different climate backgrounds in Yunnan Province[J]. Meteorological Science and Technology, 2013, 41(1):126-130.]
[15] 程建刚, 解明恩. 近50年云南区域气候变化特征分析[J]. 地理科学进展, 2008, 27(5):19-26.[CHENG J G, XIE M E. The analysis of regional climate change features over Yunnan in recent 50 years[J]. Progress in Geography, 2008, 27(5):19-26.]
[16] 周跃. 云南省气候变化影响评估报告[M]. 北京:气象出版社, 2011.
[17] 陈宗瑜. 云南气候总论[M]. 北京:气象出版社, 2001:196.
[18] 中国气象局国家气象中心编中国气象局预测减灾司. 中国气象地理区划手册[M]. 北京:气象出版社, 2006:72.
[19] GOCIC M, TRAJKOVIC S. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100:172-182.
[20] FARLIE D J G. The Performance of some correlation coefficients for a general bivariate distribution[J]. Biometrika, 1960, 47(3/4):307-323.
[21] 徐宗学, 米艳娇, 李占玲, 等. 和田河流域气温与降水量长期变化趋势及其持续性分析[J]. 资源科学, 2008, 30(12):1833-1838.
[1] 卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(06): 925-936.
[2] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[3] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[4] 刘燕, 王业成, 王让会, 刘圆, 袁琦菲, 李成. 南京浦口区大气负离子的时空特征及其与气象条件的关系[J]. 长江流域资源与环境, 2017, 26(05): 706-712.
[5] 于英鹏, 陈洪全, 刘敏. 玻璃表面PAHs垂向分布特征与室内外对比研究[J]. 长江流域资源与环境, 2017, 26(05): 765-770.
[6] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[7] 刘海晨, 丁明月, 江文华, 陈勇航, 张华, 杜豪杰, 李嘉栋, 邱靖涵. 从气溶胶微物理属性分析冬季重庆地区霾的垂直分布特征[J]. 长江流域资源与环境, 2017, 26(04): 641-648.
[8] 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460.
[9] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[10] 谭静, 陈正洪, 罗学荣, 阳威, 舒斯, 徐金华. 湖北省旅游景区大气负氧离子浓度分布特征以及气象条件的影响[J]. 长江流域资源与环境, 2017, 26(02): 314-323.
[11] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[12] 李浩杰, 种丹, 范硕, 张世强, 王杰. 近三十年云南九大高原湖泊水面面积遥感变化监测[J]. 长江流域资源与环境, 2016, 25(Z1): 32-37.
[13] 李嬛, 宁越敏, 魏也华, 陈斐然. 长江经济带沿江城市群空间分布格局与联动机理研究[J]. 长江流域资源与环境, 2016, 25(12): 1797-1806.
[14] 段辛斌, 谢意军, 郭杰, 王珂, 刘绍平, 陈大庆. 长江中游洪湖至宜昌江段鱼类空间分布特征的水声学研究[J]. 长江流域资源与环境, 2016, 25(12): 1842-1849.
[15] 是怡芸, 赵月, 查燕, 张银龙. 南京市植物叶面颗粒物的黑碳含量及时空分布特征[J]. 长江流域资源与环境, 2016, 25(12): 1886-1893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[2] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170 .
[3] 吴 威,曹有挥,曹卫东,徐 建,王 玥,. 区域高速公路网络构建对可达性空间格局的影响——以安徽沿江地区为实证 [J]. 长江流域资源与环境, 2007, 16(6): 726 .
[4] 胥勤勉,杨达源,董 杰,周 彬. 滇池水环境治理的“调水”“活水”工程[J]. 长江流域资源与环境, 2006, 15(1): 116 -119 .
[5] 倪绍祥. 长三角地区经济一体化与土地资源管理[J]. 长江流域资源与环境, 2004, 13(6): 536 -540 .
[6] 黄朝禧,赵绪福,韩桐魁. 富水水库消落区土地开发试验及其效果[J]. 长江流域资源与环境, 2005, 14(4): 435 -439 .
[7] 刘 伟. 长江经济带区域经济差异分析[J]. 长江流域资源与环境, 2006, 15(2): 131 -135 .
[8] 靳晓莉,高俊峰,赵广举. 太湖流域近20年社会经济发展对水环境影响及发展趋势[J]. 长江流域资源与环境, 2006, 15(3): 298 -302 .
[9] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116 .
[10] 储胜金,许 刚. 浙北山区土地利用与生态保护的冲突与协调机制研究冲突与协调机制研究——以天目山自然保护区为例[J]. 长江流域资源与环境, 2004, 13(1): 24 -29 .