长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1263-1269.doi: 10.11870/cjlyzyyhj201508001

• 区域可持续发展 •    下一篇

基于CLUE-S模型的湿地公园情景规划——以南京长江新济洲国家湿地公园为例

汪辉1, 余超2, 李明阳2, 时宇2, 杨玉锋2   

  1. 1. 南京林业大学风景园林学院, 江苏 南京 210037;
    2. 南京林业大学林学院, 江苏 南京 210037
  • 收稿日期:2014-08-06 修回日期:2014-12-29 出版日期:2015-08-20
  • 作者简介:汪辉(1973~),男,副教授,主要从事园林规划设计与理论方面研究.E-mail:nfu-wh@163.com
  • 基金资助:
    国家自然科学基金"湿地公园生态适宜性研究"(31170660)

SCENARIO PLANNING OF LAND USE IN WETLAND PARK BASED ON CLUE-S MODEL——A CASE OF XINJIZHOU NATIONAL WETLAND PARK IN THE YANGTZE RIVER

WANG Hui1, YU Chao2, LI Ming-yang2, SHI Yu2, YANG Yu-feng2   

  1. 1. College of Landscape Architecture of Nanjing Forestry University, Nanjing 210037, China;
    2. College of Forest, Nanjing Forestry University, Nanjing 210037, China
  • Received:2014-08-06 Revised:2014-12-29 Online:2015-08-20

摘要: 基于计算机模型的湿地公园规划具有低成本、高效率、多情景等优点,可以为规划研究提供初步方案的评优和选择。将CLUE-S模型运用到湿地公园规划中,结合生态保护情景和旅游开发情景的设定,对新济洲湿地公园进行2020年景观格局模拟预测,最后从湿地鸟类穿越的最小累积阻力模型角度,对两种情景进行了比较分析,得出如下结论:(1)对CLUE-S模型在研究区的适用性进行验证,经过计算,模拟的精度检验指数Kappa值为0.763,表明CLUE-S模型用来做新济洲湿地公园景观格局变化的预测模型具有良好的可靠性;(2)土壤有机质含量是推动新济洲湿地公园景观变化的最重要驱动因子,其影响力度远远高于其他因子;(3)通过建立MCR模型可以发现,两种情景都具有各自的优缺点,对于生态保护情景需要注意的是拓宽湿地鸟类穿越廊道,减少最小累积阻力路线生态缓冲区内的人为干扰。而对于旅游开发情景来说,构建整体的生态串联性则显得尤为重要,需要在中部大阻力区域为湿地鸟类穿越开辟一条良好的保护通道。

关键词: 湿地公园, CLUE-S, MCR

Abstract: Wetland park planning based on computer models has the advantage of low cost, high efficiency, more scenarios, and the ability to provide preliminary scheme to estimate and select. This research applied CLUE-S model in wetland park planning, combined with ecological protection scenario and tourism development scenario, with an aim to predict the landscape pattern in 2020 of the Xinjizhou Wetland Park. At last, from the angle of minimum cumulative resistance, the two scenarios were compared and analyzed. The results are as follows. First, in the first scenario of ecological protection, the wetland and forest will comprise the major components of the park in 2020, occupying 47.6 percent and 39.9 percent of the total land area, respectively, while the land for grassland and built-up is only 10.9% and 0.6%. In the second scenario of tourism development, the land for wetland, forest, grassland and built-up in 2020 will be 46.9%, 34.7%,1.7% and 16.75,respectively.To verify the applicability of CLUE-S model in the study area, the accuracy test index of Kappa was calculated and its value reached 0.763, indicating the CLUE-S model has good reliability in the study area. Secondly, the content of soil organic matter was the most important driving factor to promote landscape changes in wetland park and its effect was much higher than the other factors, including wetland height, slope, soil pH, organic matter content and the distance from the shoreline, away from the main road. Thirdly, by establishing the MCR model, it was found that the both two scenarios have their advantages and disadvantages. In the ecological protection scenario, the crossing corridor for wetland birds should be broadened and the man-made interference in the buffer of minimum resistance line should be reduced. Im the tourism development scenario, it is particularly important to construct the whole ecological series, and it needs to provide a good protection channel for wetland birds through the large resistance area in the central region. Though wetland park planning based computer models has its limitations, it can provide decision support for the spatial planning of wetland parks which are very sensitive to dramatic ecological changes. With the development of new computer technology based GIS models, scenario planning method will become an important tool for the making of wetland conservation and development plan in the future, thus exploring a new planning way to harmonious development of ecology and economy.

Key words: wetland park, CLUE-S, MCR

中图分类号: 

  • S759.93
[1] 王 臣.哈尔滨市湿地资源的保护对策分析[J].防护林科技,2015(1):93-94.
[2] VERBURG P H,OVERMARS K P.Dynamic simulation of land-use change trajectories with the CLUE-S model. In: Koomen[J].The GeoJournal Library, 2007, 90(5):321-337.
[3] 黄 明,张学霞,张建军,等.基于CLUE-S模型的罗玉沟流域多尺度土地利用变化模拟[J].资源科学,2012,3(4):769-776.
[4] 陈 莹,尹义星,陈 爽.典型流域土地利用/覆被变化预测及景观生态效应分析——以太湖上游西苕溪流域为例[J].长江流域资源与环境,2009,18(8):765-770.
[5] 陆汝成,黄贤金,左天惠,等.基于CLUE-S和Markov模型的土地利用情景模拟研究——以江苏省环太湖地区为例[J].地理科学,2009,(4):577-581.
[6] NAVIGANT CONSNLTING, I NC.Massachusetts Energy Renewable Potential Final Report[R].Massachusetts Department of Energy Resources(DOER) and Massachusetts Technology Collaborative(MTC),2008.
[7] KNAAPEN J P, SCHEFFER M, HARMS B. Estimating habitat isolation in landscape planning[J]. Landscape and Urban Planning,1992,(23):1-16.
[8] 李平星,樊 杰.区域尺度城镇扩张的情景模拟与生态效应——以广西西江经济带为例[J].生态学报,2014,34(24):7366-7384.
[9] 刘孝富,舒俭民,张林波.最小累积阻力模型在城市土地生态适宜性评价中的应用——以厦门为例[J].生态学报,2010,30(2):0421-0428.
[10] 周 锐,苏海龙,王新军,等.CLUE-S模型对村镇土地利用变化的模拟与精度评价[J].长江流域资源与环境,2012,21(2):174-180.
[11] 张永民,赵士洞, VERBURG P H.CLUE-S模型及其在奈曼旗土地利用时空间变化模拟中的应用[J].自然资源学报,2003,18(3):310-317.
[1] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[2] 田多松, 傅碧天, 吕永鹏, 杨凯, 车越. 基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究[J]. 长江流域资源与环境, 2016, 25(04): 613-620.
[3] 朱康文, 李月臣, 周梦甜. 基于CLUE-S模型的重庆市主城区土地利用情景模拟[J]. 长江流域资源与环境, 2015, 24(05): 789-797.
[4] 赵 微, 黄介生, 李 娜. 水资源冲突分析研究进展[J]. 长江流域资源与环境, 2008, 17(3): 406-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .