长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 404-411.doi: 10.11870/cjlyzyyhj201603006

• 自然资源 • 上一篇    下一篇

三峡库区消落带水淹初期主要优势草本植物生态位变化特征

王晓荣1,2, 程瑞梅1, 肖文发1, 潘磊2, 曾立雄1   

  1. 1. 中国林业科学研究院森林生态环境与保护研究所, 北京 100091;
    2. 湖北省林业科学研究院, 湖北 武汉 430075
  • 收稿日期:2015-06-29 修回日期:2015-09-14 出版日期:2016-03-20
  • 通讯作者: 程瑞梅 E-mail:chengrm@forestry.ac.cn
  • 作者简介:王晓荣(1984~),男,博士研究生,助理研究员,主要从事森林生态方面的研究. E-mail: rongagewang@126.com
  • 基金资助:
    国家"十三五"科技支撑计划项目(2015BAD07B04)

NICHE VARIATION OF DOMINANT HERBACEOUS PLANTS IN WATERLEVEL-FLUCTUATING ZONE OF THREE GORGES RESERVOIR AT THE BEGINNING AFTER CHARGING WATER

WANG Xiao-rong1,2, CHENG Rui-mei1, XIAO Wen-fa1, PAN Lei2, ZENG Li-xiong1   

  1. 1. Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China;
    2. Hubei Academy of Forestry, Wuhan 430075, China
  • Received:2015-06-29 Revised:2015-09-14 Online:2016-03-20
  • Supported by:
    Thirteen-Five National Science and Technology Support Program(2015BAD07B04)

摘要: 根据三峡库区初期水位涨落情况,以空间代替时间法,连续两年对典型消落带区域地上植被进行调查,通过计算生态位宽度和生态位重叠来分析不同水淹时间下优势草本植物生态位的变化特征。结果表明,一年水淹区段在未水淹时,植物生态位宽度普遍较窄,此时生态位明显特化,而第二年水淹极大的增加了适应干湿变化的物种的优势度。水淹前生态位重叠值大于0.5的只有12对,小于0.2种对为189对,其中生态位重叠值为零的为103对;水淹后生态位重叠值大于0.5的有24对,小于0.2种对为53对,其中生态位重叠值为零的为6对,说明生境由干燥到湿润的变化,对湿润环境相对适应的物种存活,优势植物生态位重叠明显增加。经两年水淹区段中,第一年以毛马唐的生态位宽度最高,其余17种物种生态位宽度小于0.2的物种占优势物种的61%,第二年以雾水葛和鳢肠的生态位宽度较大,其余15种物种生态位宽度小于0.2的物种占优势物种的50%,共同出现的物种仅有8种。生态位重叠值大于0.5的种对由5对上升到17对,生态位重叠值为零的种对由10对减低到2对,说明连续水淹产生更加均一的生境类型,对资源要求相似的物种是增加的。

关键词: 三峡库区, 消落带, 水淹初期, 生态位宽度, 生态位重叠

Abstract: Based on the periodical fluctuations of water level, the standing vegetation in two consecutive flooding years was investigated by a space-for-time substitution method in the water-level-fluctuating zone in Three Gorges Reservoir Area. Niche breadth and niche overlap were calculated and were further used to analyze the changes of the plants species' niche breadth of the dominant herbaceous plants flooded for various periods. The results showed the niche breadth of the dominant plants before being flooded in the first flooding year was generally narrow and the niche breadth change was very significant. While in the second flooding year, the acclimatization of herbaceous plants to the moisture change increased. Before flooding, the number of species pairs with overlap value greater than 0.5 was only 125, and the number of species pairs with overlap value less than 0.2 was 189, among which, 103 species pairs' overlap values are 0. After flooding, the number of species pairs with overlap value bigger than 0.5 was 24, the number of those with overlap value less than 0.2 was 53, and 6 of the 53 species pairs had an overlap value of 0, which indicated survival of the species that can acclimate to the environmental change from dry to wet condition, resulting in an increased overlap value of the dominant plant species. At the areas flooded for 2 consecutive years, Digitaria chrysoblephara displayed the biggest niche breadth in the first year, and the rest 17 species, which occupy 61% of all the dominant species, showed the niche breadth less than 0.2. In the second year of the two consecutive flooding years, Pouzolzia zeylanica and Eclipta prostrata displayed comparatively big niche breadth, and the rest 15 species accounting for 50% amount of all the dominant species showed niche breadths less than 0.2. Only 8 herbaceous plants are the species that survived in the two consecutive years. Also in the second year of the two consecutive flooding years, there were 17 species pairs with niche overlap values over 0.5, while the number of species pairs with niche overlap values of 0 was 2, indicating that flooding in two consecutive years helped to form a more homogenous ecological habitant, and the number of species acclimating to similar environment increased.

Key words: Three Gorges Reservoir, water-level-fluctuating zone, the beginning after charging water, niche breadth, niche overlap

中图分类号: 

  • Q948.1
[1] 崔丽娟, 李伟, 赵欣胜, 等. 采砂迹地型湿地恢复过程中优势种群生态位研究[J]. 生态科学, 2013, 32(1):73-77.[CUI L J, LI W, ZHAO X S, et al. Niche of dominant species in the process of sand-mining wetland restoration[J]. Ecological Science, 2013, 32(1):73-77.]
[2] 吴东丽, 上官铁梁, 张金屯, 等. 滹沱河流域湿地植被优势种群生态位研究[J]. 应用与环境生物学报, 2006, 12(6):772-776.[WU D L, SHANGGUAN T L, ZHANG J T, et al. Niche of dominant species of wetland vegetation in the Hutuo River Valley[J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(6):772-776.]
[3] 陈秀芝, 朱莉莉, 郭水良. 长江口九段沙典型潮沟植物群落的物种多样性和种群生态位[J]. 长江流域资源与环境, 2010, 19(Z2):20-27.[CHEN X Z, ZHU L L, GUO S L. Species diversity and population niche of plant community within typical tidal creek of Jiuduansha nature reserve in the Yangtze River Estuary[J]. Resources and Environment in the Yangtze Basin, 2010, 19(Z2):20-27.]
[4] 徐治国, 何岩, 闫百兴, 等. 三江平原典型沼泽湿地植物种群的生态位[J]. 应用生态学报, 2007, 18(4):783-787.[XU Z G, HE Y, YAN B X, et al. Niche characteristics of typical marsh wetland plant populations in Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 2007, 18(4):783-787.]
[5] 刘加珍, 陈亚宁, 张元明. 塔里木河中游植物种群在四种环境梯度上的生态位特征[J]. 应用生态学报, 2004, 15(4):549-555.[LIU J Z, CHEN Y M, ZHANG Y M. Niche characteristics of plants on four environmental gradients in middle reaches of Tarim River[J]. Chinese Journal of Applied Ecology, 2004, 15(4):549-555.]
[6] 李峰, 谢永宏, 陈心胜, 等. 黄河三角洲湿地水生植物组成及生态位[J]. 生态学报, 2009, 29(11):6257-6265.[LI F, XIE Y H, CHEN X S, et al. Composition of aquatic plants and their niche characteristics in wetlands of the Yellow River Delta[J]. Acta Ecologica Sinica, 2009, 29(11):6257-6265.]
[7] 谭芮, 李伟, 杨宇明, 等. 不同干扰条件下纳帕海湿地植物群落优势种群的生态位[J]. 湖泊科学, 2013, 25(5):681-687.[TAN R, LI W, YANG Y M, et al. Niche characteristics of dominant species in Napahai wetland plant communities under different disturbance regimes[J]. Journal of Lake Sciences, 2013, 25(5):681-687.]
[8] 王勇, 吴金清, 黄宏文, 等. 三峡库区消涨带植物群落的数量分析[J]. 武汉植物学研究, 2004, 22(4):307-314.[WANG Y, WU J Q, HUANG H W, et al. Quantitative analysis of plant communities in water- level-fluctuation zone within Three Gorges Reservoir Area of Changjiang River[J]. Journal of Wuhan Botanical Research, 2004, 22(4):307-314.]
[9] 王晓荣, 程瑞梅, 唐万鹏, 等. 三峡库区消落带水淹初期土壤种子库月份动态[J]. 生态学报, 2012, 32(10):3107-3117.[WANG X R, CHENG R M, TANG W P, et al. Monthly dynamic variation of soil seed bank in water-level-fluctuating zone of Three Gorges Reservoir at the beginning after charging water[J]. Acta Ecologica Sinica, 2012, 32(10):3107-3117.]
[10] LIEFFERS V J. Emergent plant communities of oxbow lakes in northeastern Alberta:salinity, water-level fluctuation, and succession[J]. Canadian Journal of Botany, 1984, 62(2):310-316.
[11] URBANC-BERĆIĆ O, GABERŚĆIK A. The relationship of the processes in the rhizosphere of common reed phragmites australis, (Cav.) TRIN. ex. STEDEUL to water fluctuation[J]. International Review of Hydrobiology, 2004, 89(5/6):500-507.
[12] NILSSON C, EKBLAD A, GARDFJELL M, et al. Long-term effects of river regulation on river margin vegetation[J]. Journal of Applied Ecology, 1991, 28(3):963-987.
[13] 郭泉水, 康义, 洪明, 等. 三峡库区消落带陆生植被对首次水陆生境变化的响应[J]. 林业科学, 2013, 49(5):1-9.[GUO Q S, KANG Y, HONG M, et al. Responses of terrestrial plants in hydro-fluctuation belt of the Three Gorges Reservoir Area to the first time flooding-drying habitat change[J]. Scientia Silvae Sinicae, 2013, 49(5):1-9.]
[14] 齐代华, 贺丽, 周旭, 等. 三峡水库消落带植物物种组成及群落物种多样性研究[J]. 草地学报, 2014, 22(5):966-970.[QI D H, HE L, ZHOU X, et al. Species composition and species diversity of plant community in the water-lever-fluctuation zone of Three Gorges Reservoir[J]. Acta Agrectir Sinica, 2014, 22(5):966-970.]
[15] 朱妮妮, 秦爱丽, 郭泉水, 等. 三峡水库巫山-秭归段典型消落带植被空间分异研究[J]. 林业科学研究, 2015, 28(1):109-115.[ZHU N N, QIN A L, GUO Q S, et al. Spatial heterogeneity of plant community in Zigui and Wushan typical hydro-fluctuation belt of Three Gorges Reservoir Areas[J]. Forest Research, 2015, 28(1):109-115.]
[16] 吕明权, 吴胜军, 陈春娣, 等. 三峡消落带生态系统研究文献计量分析[J]. 生态学报, 2015, 35(11):3504-3518.[LV M Q, WU S J, CHEN C D, et al. A review of studies on water level fluctuating zone (WLFZ) of the Three Gorges Reservoir (TGR) based on bibliometric perspective[J]. Acta Ecologica Sinica, 2015, 35(11):3504-3518.]
[17] 冶民生, 关文彬, 吴斌, 等. 岷江干旱河谷主要灌木种群生态位研究[J]. 北京林业大学学报, 2006, 28(1):7-13.[YE M S, GUAN W B, WU B, et al. Niche characteristics of main shrub populations in the arid valley of the Minjiang River, southwestern China[J]. Journal of Beijing Forestry University, 2006, 28(1):7-13.]
[18] 王正文, 刑福, 祝廷成, 等. 松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J]. 植物生态学报, 2002, 26(6):708-716.[WANG Z E, XING F, ZHU T C, et al. The responses of functional group composition and species diversity of aneurolepidium Chinese grassland to flooding disturbance on Songnen Plain, northeastern China[J]. Acta Phytoecologica Sinica, 2002, 26(6):708-716.]
[19] 徐洋, 刘文治, 刘贵华. 生态位限制和物种库限制对湖滨湿地植物群落分布格局的影响[J]. 植物生态学报, 2009, 33(3):546-554.[XU Y, LIU W Z, LIU G H. Plant distribution in freshwater lakeshore:relative importance of species pool limitation vs. niche limitation[J]. Acta Phytoecologica Sinica, 2009, 33(3):546-554.]
[20] 雷波, 王业春, 由永飞, 等. 三峡水库不同间距高程消落带草本植物群落物种多样性与结构特征[J]. 湖泊科学, 2014, 26(4):600-606.[LEI B, WANG Y C, YOU Y F, et al. Diversity and structure of herbaceous plant community in typical water-level-fluctuation zone with different spacing elevations in Three Gorges Reservior[J]. Journal of Lake Sciences, 2014, 26(4):600-606.]
[21] 陈忠礼, 袁兴中, 刘红, 等. 水位变动下三峡库区消落带植物群落特征[J]. 长江流域资源与环境, 2012, 21(6):672-677.[CHEN Z L, YUAN X Z, LIU H, et al. Effects of water level fluctuation on plant communities in the littoral zone of the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2012, 21(6):672-677.]
[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470.
[3] 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237.
[4] 祖波, 周领, 李国权, 刘波. 三峡库区重庆段某排污口下游污染物降解研究[J]. 长江流域资源与环境, 2017, 26(01): 134-141.
[5] 刘均卫, 刘涛. 三峡库区支流常年库区航道通航尺度研究[J]. 长江流域资源与环境, 2016, 25(11): 1711-1719.
[6] 刘金珍, 樊皓, 阮娅. 乌东德水库坝前段消落带生态类型划分及生态修复模式初探[J]. 长江流域资源与环境, 2016, 25(11): 1767-1773.
[7] 王彬俨, 严冬春, 文安邦, 陈佳村. 三峡水库干流消落带沉积泥沙粒径特征及其物源意义[J]. 长江流域资源与环境, 2016, 25(09): 1421-1429.
[8] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[9] 杨杉, 吴胜军, 周文佐, 吕明权, 张德微, 黄平. 三峡库区典型土壤酸碱缓冲性能及其影响因素研究[J]. 长江流域资源与环境, 2016, 25(01): 163-170.
[10] 王林, 陈正洪, 代娟, 汤阳. 气象因子与地理因子对长江三峡库区雾的影响[J]. 长江流域资源与环境, 2015, 24(10): 1799-1804.
[11] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[12] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[13] 吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷. 基于SCS-CN与MUSLE模型的三峡库区小流域侵蚀产沙模拟[J]. 长江流域资源与环境, 2015, 24(05): 860-867.
[14] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
[15] 王丽婧, 郑丙辉, 李子成. 三峡库区及上游流域面源污染特征与防治策略[J]. 长江流域资源与环境, 2009, 18(8): 783-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[5] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[6] 杨 选. 国内外典型水治理模式及对武汉水治理的借鉴[J]. 长江流域资源与环境, 2007, 16(5): 584 .
[7] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[8] 李恒鹏,杨桂山,刘晓玫,万荣荣. 流域土地利用变化的长周期水文效应及管理策略[J]. 长江流域资源与环境, 2005, 14(4): 450 -455 .
[9] 廖顺宝,李泽辉. 四川省人口分布与土地利用的关系及人口数据空间化试验[J]. 长江流域资源与环境, 2004, 13(6): 557 -561 .
[10] 董林水, 张旭东, 周金星, 李冬雪. 青藏铁路沿线北段植被物种丰富度及盖度的动态变化[J]. 长江流域资源与环境, 2008, 17(4): 551 .