长江流域资源与环境 >> 2022, Vol. 31 >> Issue (10): 2166-2175.doi: 10.11870/cjlyzyyhj202210006

• 自然资源 • 上一篇    下一篇

1961~2020年三峡区间降水极值特征分析

李  帅1陈鲜艳2*,龚文婷1,申赵勇1,朱文丽1   

  1. (1 中国长江三峡集团有限公司,湖北 宜昌 443133;2 国家气候中心,北京 100081)
  • 出版日期:2022-10-20 发布日期:2022-10-27

Characteristics of Precipitation Extremes in Three Gorges Reservoir Intervening Basin During 1961-2020

LI Shuai1, CHEN Xian-yan2, GONG Wen-ting1, SHEN Zhao-yong1, ZHU Wen-li1   

  1. (1. China Three Gorges Corporation, Yichang 443133, China; 2. National Climate Center, Beijing 100081, China)
  • Online:2022-10-20 Published:2022-10-27

摘要: 为探明三峡区间极端降水变化规律,基于三峡区间18个气象站点1961~2020年的逐日降水数据,首先选取7个常用的极端降水指数,分析三峡区间降水极值的时空变化规律。然后,基于年最大值(AM)法和超门限阈值(POT)法筛选降水极值样本序列,利用广义极值分布(GEV)和广义Pareto分布(GPD)拟合两组样本序列。基于Kolmogorov-Smirnov检验结果确定最优拟合分布函数,并根据最优拟合分布函数推求不同重现期水平下的降水量。结果表明:(1)三峡区间江北降水极值整体强于江南,江北开州站为三峡区间降水极值中心。(2)GEV分布适合拟合AM序列,GPD分布适合拟合POT序列,基于GEV-AM和GPD-POT组合得到的不同重现期水平的降水量空间分布相似,但基于AM序列推算一定重现期水平下的降水极值更大。研究成果可为三峡水库防洪调度及三峡库区地质灾害防治提供一定参考。

Abstract: In order to explore the characteristics of precipitation extremes in the Three Gorges Reservoir Intervening Basin (TGRIB), based on the daily precipitation data (18 rain gauge stations) in the TGRIB during 1961-2020, seven extreme precipitation indices were firstly selected in this paper to investigate the tempo-spatial variations of extreme precipitation in the TGRIB. Two extreme precipitation series were then filtered from the 60 years of precipitation data at 18 stations using the annual maximum (AM) and peak-over-threshold (POT) method, and the generalized extreme distribution (GEV) and generalized Pareto distribution (GPD) were used to fit the two precipitation series and to investigate their statistic characteristics. The best distribution was determined by the Kolmogorov-Smirnov test and then the best distribution was used to estimate the precipitation extremes in different return periods.  The results showed that: (1) the precipitation extremes in the north bank of the Yangtze River were greater than those in the south bank, the Kaizhou station is the peak of extreme precipitation in the TGRIB. (2) the optimal distribution for the AM series were GEV distribution, and the best distribution for the POT series were GPD distribution. The distributions of precipitation extremes in different return periods derived from two combinations of GEV-AM and GPD-POT were similar, but the estimated precipitation amounts by the GEV-AM combination were larger than that of the GPD-POT combination in the different return periods. It provides a certain reference for the flood control operation of the Three Gorges Reservoir and the prevention and control of geological disasters in the TGRIB.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[2] 张梦薇, 吕成文. 丰乐河流域表层土壤有机碳空间变异特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1420 .
[3] 韦汝虹, 金 李, 方 达. 基于GIS的中国城市房地产泡沫的空间传染性分析——以2006~2014年35个大中城市为例[J]. 长江流域资源与环境, 2018, 27(09): 1967 -1977 .
[4] 张丽琴, 渠丽萍, 吕春艳, 李 玲. 基于空间格局视角的武汉市土地生态系统服务价值研究[J]. 长江流域资源与环境, 2018, 27(09): 1988 -1997 .
[5] 田雨 周宝同 付伟 王蓉. 2000-2015年山地城市土地利用景观格局动态演变研究—以重庆市渝北区为例[J]. 长江流域资源与环境, , (): 0 .
[6] 曾源源, 胡守庚, 瞿诗进, . 长江中游经济带交通区位条件变化与建设用地扩张时空耦合规律[J]. 长江流域资源与环境, 2018, 27(12): 2651 -2662 .
[7] 梁辉 王春凯. 201904产业发展对城市蔓延影响的差异性分析—以长江经济带104个城市为例[J]. 长江流域资源与环境, , (): 0 .
[8] 杨远琴, 任 平, 洪步庭, . 基于生态安全的三峡库区重庆段土地利用冲突识别[J]. 长江流域资源与环境, 2019, 28(02): 322 -332 .
[9] 王 倩, 王云琦, 马 超, 王 彬, 李一凡. 缙云山针阔混交林碳通量变化特征及影响因子研究[J]. 长江流域资源与环境, 2019, 28(03): 565 -576 .
[10] 卢德彬, 毛婉柳, 杨东阳, 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, 2019, 28(03): 651 -660 .