长江流域资源与环境 >> 2009, Vol. 18 >> Issue (2): 170-.

• 生态环境 • 上一篇    下一篇

溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究

张信宝1|2,曹植菁3| 艾南山3   

  1. 1.中国科学院/水利部成都山地灾害与环境研究所| 四川 成都 610041; 
    2.中国科学院地理资源与环境研究所| 北京 100101; 3.四川大学建筑与环境学院| 四川 成都610065
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-02-20

POTENTIAL IMPACT OF SEDIMENT RETAINING BY XILUODU HYDROPOWER PROJECT TO THE EUTROPHICATION OF THREE GORGES RESERVOIR

ZHANG Xinbao1|2| CAO Zhijing3| AI Nanshan3   

  1. 1.Institute of Mountain Hazards and Environment| Chinese Academy of Sciences| Chengdu 610041| China; 
    2.Institute of Geographic Sciences and Natural Resource Research| Chinese Academy of Sciences| Beijing 100101| China; 
    3.Institute of Architecture and Environment| Sichuan University| Chengdu 610065| China
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-02-20

摘要:

从泥沙吸附的角度,探讨金沙江溪洛渡水电站拦沙对三峡水库溶解性磷负荷的影响。2006年11月在金沙江、长江干流和支流岷江、沱江采集了淤积泥沙和水样,测定了泥沙的全磷、有效磷和磷固定量及水的溶解性磷等指标。岷江和沱江泥沙的有效磷含量远高于金沙江和长江干流,反映了四川盆地支流的磷污染较干流严重;干流泥沙的有效磷含量向下游呈增加和磷固定量向下游呈减少的趋势,反映了干流泥沙沿途不断吸附四川盆地支流汇入干流中的溶解性磷,磷固定能力有所降低。根据金沙江宜宾与长江朱沱泥沙的有效磷含量和磷固定量,金沙江来沙年吸附溶解性磷分别为382和6 885 t,分别相当于朱沱站的26%和468%。溪洛渡水库拦蓄泥沙,金沙江来沙吸附长江干流溶解性磷的量将有所减少。水库投入运行后的前50年,以有效磷含量计,金沙江来沙的磷吸附量占朱沱年溶解性磷总量的比例从26%降至10%;以磷固定量计,从468%降至174%。长江干流进入三峡水库的年溶解性磷总量有可能增加16%~294%。金沙江来沙降低三峡入库磷负荷的实际功能,可能介于有效磷含量和磷固定量的计算值之间,具体值还需开展进一步的试验研究。

关键词: 溪洛渡水电工程, 拦沙, 磷, 三峡水库, 富营养化

Abstract:

In November,2006,sediment and water samples in Jinsha River,the Yangtze River mainstream,Ming River and Tuo River were collected respectively.And then a series of indices of phosphorus of the sediment samples were tested,including total phosphorus,available phosphorus,fixed phosphorus and dissolved phosphorus.The results showed that the available phosphorus in Ming River sediment samples and Tuo River sediment samples were significantly higher than those in Jinsha River and the Yangtze River mainstream,which reflected the phosphorus pollution of the Yangtze River branch in Sichuan Basin was severer than that in the mainstream.The available phosphorus in mainstream samples increases from upstream to downstream,while the fixed phosphorus decreases.It reflects that the sediment in mainstream has absorbed the dissolved phosphorus from the branches in Sichuan Basin,so the fixation capacity of sediment in mainstream was reducing.According to the difference values of available phosphorus in sediment samples from Jinsha River (Yibing Station) and the Yangtze River (Zhutuo Station),calculated value of dissolved phosphorus absorbed by sediment in Jinsha River was 382 t/a and the capacity of dissolved phosphorus absorbed by sediment in Jinsha River was 6 885 t/a,which account for 26% and 468% of the annual dissolved phosphorus of the Zhutuo Station,respectively.It is likely that the real value of dissolved phosphorus absorbed by sediment in Jinsha River lies between 382~6 885 t/a,which reduced the load of phosphorus entering the Three Gorges Reservoir,although the real value needs further researching.When the Xiluodu Hydropower Project were built up,assuming that the sediment outflow from the reservoir is a fixed value in the 50 years,the value of dissolved phosphorus entering the Three Gorges Reservoir would increase 16%~294%.

Key words: Xiluodu Hydropower Project, sediment retaining, phosphorus, Three Gorges Reservoir, eutrophication

[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(06): 925-936.
[3] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[4] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
[5] 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584.
[6] 臧玉珠, 林晨, 金志丰, 方飞, 周生路. 土地利用变化下沿海地区吸附态磷负荷动态变化研究[J]. 长江流域资源与环境, 2016, 25(07): 1093-1102.
[7] 李国莲, 谢发之, 张瑾, 陈广洲, 汪静柔. 巢湖水及沉积物中总磷的分布变化特征[J]. 长江流域资源与环境, 2016, 25(05): 830-836.
[8] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[9] 匡武, 芮明, 张彦辉, 严云志, 吴添天. 巢湖湖滨带生态恢复工程对暴雨径流氮磷削减效果研究[J]. 长江流域资源与环境, 2015, 24(11): 1906-1912.
[10] 潘晓洁, 黄一凡, 郑志伟, 邹曦, 朱梦灵, 胡莲, 万成炎. 三峡水库小江夏初水华暴发特征及原因分析[J]. 长江流域资源与环境, 2015, 24(11): 1944-1952.
[11] 赖晓明, 廖凯华, 朱青, 吕立刚, 徐飞. 基于Hydrus-1D模型的太湖流域农田系统水分渗漏和氮磷淋失特征分析[J]. 长江流域资源与环境, 2015, 24(09): 1491-1498.
[12] 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506.
[13] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[14] 尹炜, 朱惇, 雷俊山, 贾海燕, 曾祉祥. 丹江口水库典型消落区不同土地利用类型土壤养分分布[J]. 长江流域资源与环境, 2015, 24(07): 1185-1191.
[15] 盛海燕, 姚佳玫, 何剑波, 刘明亮, 韩轶才, 虞左明. 浙江青山水库浮游植物群落结构变化及与环境因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 978-986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[4] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[5] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .