长江流域资源与环境 >> 2008, Vol. 17 >> Issue (2): 275-275.

• 自然资源 • 上一篇    下一篇

太湖主体湖区对梅梁湾藻类影响定量化研究

王 芳   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-03-20

QUANTITATIVE STUDY ON THE INFLUENCE OF LAKE TAIHU'S MAIN ZONE UPON MEILIANG BAY

WANG Fang   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-03-20

摘要:

针对太湖梅梁湾独特的地理位置和富营养化严重的问题,利用太湖水量水质模型和梅梁湾藻类生长模型,在对模型进行了率定、验证的基础下,模拟了在东南风和西北风两种常见风向的条件下,太湖主体湖区对梅梁湾内营养盐浓度和藻类浓度的影响情况,并将其影响定量化。本次模拟较好地反映了太湖主体湖区在两种常见风场的条件下对梅梁湾内水质影响情况。模拟得到以下结果:在不考虑风场和流场的情况下,梅梁湾内部2001年8月藻类平均浓度为43.18 mg/m3,总氮浓度为2.48 mg/L,总磷浓度为0.248 mg/L,只考虑东南风引起流场的情况下,藻类浓度为41.92 mg/m3,总氮浓度为2.07 mg/L,总磷浓度为0.231 mg/L;考虑东南风风场和流场两个因素的情况下,藻类浓度为53.86 mg/m3,总氮浓度为2.06 mg/L,总磷浓度为0.229 mg/L;同期,只考虑西北风风场的情况下,藻类浓度为42.55 mg/m3,总氮浓度为2.19 mg/L,总磷浓度为0.232 mg/L;考虑西北风风场和流场两个因素的情况下,藻类浓度为50.71 mg/m3,总氮浓度为2.17 mg/L,总磷浓度为0.233 mg/L。结果表明,梅梁湾内部的氮、磷等营养盐浓度受到由太湖主体湖区的风场变化引起的湖流扰动的一定影响;太湖主体湖区对梅梁湾内部藻类浓度的影响主要是由藻类漂移引起的,由营养盐浓度改变而引起的藻类浓度变化非常小。

关键词: 富营养化, 太湖, 梅梁湾, 水质模型, 藻类生长模型, 定量化影响

Abstract:

The Meiliang bay is suffered from eutrophication problem.Considering the unique geographical position of Meiliang Bay at Lake Taihu,both fixed and validated twodimension water quality model and alga growing model were used to simulate the effect on nutrition and algae concentration in Meiliang Bay by main zone of Lake Taihu under southeast and northwest wind.The simulated results showed as follow: in August,2001,the average concentration of algae of Meiliang bay was 43.18 mg/m3.At the same time,the average concentration of nitrogen and phosphorus were 2.48 and 0.248 mg/L.If the parameter of flow index induced by southeast wind was added to these models,the concentration of algae,nitrogen and phosphorous were obtained to be 41.92 mg/m3,2.07 mg/L and 0.231 mg/L and 42.55 mg/m3,2.19 mg/L,0232 mg/L respectively under the influence of northwest wind effect.Considering both the influence of flow and excursion caused by southeast wind,the concentration of algae,nitrogen and phosphorous changed to be 53.86 mg/m3,2.06 mg/L and 0.229 mg/L and 50.71 mg/m3,2.17 mg/L,0.233 mg/L when wind direction transferred to northwest.The results indicated that the concentration of nitrogen and phosphorus in Meiliang Bay were affected by the flow of Lake Taihu to a certain extent and the change of alga in Meiliang Bay was mainly caused by the excursion of algae.The results agreed with the observation data very well and were considered to provide some supports for dealing with eutrophication of Lake Taihu.

Key words: eutrophication, Lake Taihu, water quality mode, algae growth model, quantitative influence

[1] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[2] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[3] 陈江龙, 田柳, 赵酉辰. 基于ILBM的太湖饮用水源地管理研究——以苏州市为例[J]. 长江流域资源与环境, 2016, 25(12): 1815-1823.
[4] 黄锐, 赵佳玉, 肖薇, 刘寿东, 李汉超, 徐敬争, 胡诚, 肖启涛. 太湖辐射和能量收支的时间变化特征[J]. 长江流域资源与环境, 2016, 25(05): 733-742.
[5] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[6] 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155.
[7] 龚志军, 李艳, 张敏, 蔡永久, 薛庆举, 许浩. 大型浅水湖泊太湖霍甫水丝蚓次级生产力的研究[J]. 长江流域资源与环境, 2015, 24(12): 2054-2060.
[8] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[9] 赖晓明, 廖凯华, 朱青, 吕立刚, 徐飞. 基于Hydrus-1D模型的太湖流域农田系统水分渗漏和氮磷淋失特征分析[J]. 长江流域资源与环境, 2015, 24(09): 1491-1498.
[10] 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506.
[11] 胡开明, 范恩卓. 西太湖区域水环境容量分配及水质可控目标研究[J]. 长江流域资源与环境, 2015, 24(08): 1373-1380.
[12] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[13] 盛海燕, 姚佳玫, 何剑波, 刘明亮, 韩轶才, 虞左明. 浙江青山水库浮游植物群落结构变化及与环境因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 978-986.
[14] 尹义星, 许有鹏, 陈莹. 太湖最高水位及其与气候变化、人类活动的关系[J]. 长江流域资源与环境, 2009, 18(7): 609-.
[15] 朱广伟. 太湖水质的时空分异特征及其与水华的关系[J]. 长江流域资源与环境, 2009, 18(5): 439-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192 .
[2] 陶建平,雷海章. 长江中游平原农业水灾风险管理的制度建设[J]. 长江流域资源与环境, 2004, 13(6): 621 -625 .
[3] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[4] 王红丽,| 刘 健 | 况雪源. 四种再分析资料与长江中下游地区降水观测资料的对比研究[J]. 长江流域资源与环境, 2008, 17(5): 703 .
[5] 王云琦,王玉杰,朱金兆. 重庆缙云山典型林分林地土壤抗蚀性分析[J]. 长江流域资源与环境, 2005, 14(6): 775 -780 .
[6] 常青山,马祥庆,王志勇. 南方重金属矿区重金属的污染特征及评价[J]. 长江流域资源与环境, 2007, 16(3): 395 .
[7] 张林, 王礼茂, 王睿博,. 长江中上游防护林体系森林植被碳贮量及固碳潜力估算[J]. 长江流域资源与环境, 2009, 18(2): 111 .
[8] 周 静, 杨桂山, 戴胡爽. 经济发展与环境退化的动态演进——环境库兹涅茨曲线研究进展[J]. 长江流域资源与环境, 2007, 16(4): 414 .
[9] 曹 昀,王国祥. 水生高等植物对悬浮泥沙的去除研究[J]. 长江流域资源与环境, 2007, 16(3): 340 .
[10] 谢春花,王克林,陈洪松,张明阳. 土地利用变化对洞庭湖区生态系统服务价值的影响[J]. 长江流域资源与环境, 2006, 15(2): 191 -195 .