长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1483-1490.doi: 10.11870/cjlyzyyhj201509007

• 自然资源 • 上一篇    下一篇

长江中下游地区连阴雨变化特征分析

王荣, 邹旭恺   

  1. 国家气候中心, 北京 100081
  • 收稿日期:2014-03-05 修回日期:2014-07-27 出版日期:2015-09-20
  • 作者简介:王荣(1991~),男,助理工程师,主要从事气象灾害、气候变化等方面的研究.E-mail:wangrong@cma.gov.cn
  • 基金资助:
    公益性行业(气象)科研专项(GYHY201106020)

An analysis on the change characteristics of consecutive rainfall in the middle and lower reaches of the yangtze river

WANG Rong, ZOU Xu-kai   

  1. National Climate Center, Beijing, 100081
  • Received:2014-03-05 Revised:2014-07-27 Online:2015-09-20

摘要: 利用长江中下游地区86站1961~2011年逐日降水量资料,采用线性倾向估计法和M-K突变检验法,分析该地区年连阴雨日数、过程次数、总降水量及降水强度的时空变化特征。结果显示:长江中下游地区大部连阴雨日数有70~130 d/a、连阴雨过程次数有7~12次/a、连阴雨总雨量为500~1 300 mm/a、年均连阴雨强度为8~10 mm/d,连阴雨过程持续时间多在8~11 d/次左右。其中连阴雨日数和频次总体呈现出南多北少、连阴雨总雨量呈东南多西北少、雨强呈东强西弱的分布态势;近50 a来,长江中下游地区平均年连阴雨日数、连阴雨过程频次、连阴雨总雨量均呈减少趋势,减少速率分别为3.8 d/10 a、0.3次/10 a、18.5 mm/10 a,其中连阴雨日数、频次减少趋势显著;降水强度呈显著增加趋势,增加速率为0.2 mm/(d·10 a)。空间上,西部连阴雨日数、过程次数均呈显著减少趋势,东部呈微弱的减少趋势;大部地区连阴雨总量均呈显著减少趋势,其中西部尤为突出。突变分析发现,长江中下游连阴雨存在突变年份,各统计因子突变主要集中在1991~2011年,连阴雨日数减少突变发生在2003年,2006年起减少趋势超过显著性水平;连阴雨频次突变发生在2004年,2010年起减少趋势超过显著性水平;连阴雨总雨量突变发生在2006年,但这种突变不显著;连阴雨降水强度于1992~1994年发生突变,2010年起增加趋势超过显著性水平。

关键词: 连阴雨, 长江中下游, 变化特征

Abstract: Based on the daily precipitation data from 86 stations in the middle and lower reaches of the Yangtze River during the period of 1961-2011, characteristics of spatial and temporal variation of consecutive rainfall days, frequencies, total amount and intensity were analyzed using the methods of linear trend estimate and M-K test. The results showed that the consecutive rainfall days were 70-130 d/a and the frequency was 7-12 times/a in most of the middle and lower reaches of the Yangtze River. Also, the total amount of rainfall was 500-1 300 mm/a with the annual consecutive rainfall intensity of 8-10 mm/d. The consecutive rainfall process lasted about 8-10 days each time. In the research regions, more days and higher frequency of consecutive rainfall were observed in the south than in the north, greater total amount of consecutive rainfall appeared in the southeast than in the northwest, and stronger rainfall intensity emerged in the east than in the west. Recent 50 years have witnessed the decreasing trends of the days, frequencies and total amount of the consecutive rain over the middle and lower reaches of the Yangtze River, with the decreasing rate of 3.8 d/10 a, 0.3 time/10a and 18.5 mm/10 a, respectively. Although the consecutive rainfall days and frequencies were significantly reduced, the rainfall intensity was significantly increased with an increasing rate of 0.2 mm/(d·10 a). The spatial distribution trend of consecutive rainfall over the middle and lower reaches of the Yangtze River was uneven. The annual days and frequencies of consecutive rainfall significantly decreased in the western regions, but slightly decreased in most eastern regions. In most areas of the middle and lower reaches of the Yangtze River, the total amount of annual consecutive rainfall was significantly reduced, especially in the western regions. The abrupt change analysis supported the existence of years with abrupt changes in the middle and lower reaches of the Yangtze River. The abrupt change of each variable mainly occurred during the period of 1991-2011. The abrupt change of reduced consecutive rainfall days emerged in 2003, and the decreasing trend became statistically significant since 2006. The abrupt change of consecutive rainfall frequencies occurred in 2004, and the decreasing trend became statistically significant since 2010. The abrupt change of total amount of consecutive rainfall intensity was present in 2006, but such change was not statistically significant. The abrupt change of consecutive rainfall was observed in 1992-1994, with a significant increasing trend emerged in 2010.

Key words: Consecutive Rainfall, the middle and lower reaches of the Yangtze River, Variation characteristics

中图分类号: 

  • P426
[1] 乔盛西.湖北省气候志[M].武汉:湖北人民出版社,1989.
[2] 吴有训,赵俊华,张民蓓,等.皖东南地区春播期连续低温阴雨天气分析[J].安徽农业科学,2003,.31(4):569-570,578.
[3] 王小玲,翟盘茂.1957~2004 年中国不同强度级别降水的变化趋势特征[J].热带气象学报,2008,.24(5):459-466.
[4] 王大钧,陈 列,丁裕国.近40年来中国降水量、雨日变化趋势及与全球温度变化的关系[J].热带气象学报,2006,22(3):283-289.
[5] 王绍武,蔡静宁,朱锦红,等.19世纪80年代到20世纪90年代中国年降水量的年代际变化[J].气象学报,2002,60(5):637-640.
[6] 马占良.青海省秋季连阴雨天气特征分析[J].青海科技,2008(2):31-33.
[7] 冯建民,郑广芬,陈豫英,等.宁夏连阴雨(雪)过程变化规律研究[J].中国沙漠,2011,31(6):1590-1597.
[8] 陈晓艺,马晓群,姚 筠.安徽省秋季连阴雨发生规律及对秋收秋种的影响[J].中国农业气象,2009,30(增2):210-214.
[9] 姜爱军,董晓敏.江苏省连阴雨过程指标及时空特征的分析[J].南京大学学报,1996 (32):11-14.
[10] 任国玉,郭 军,徐铭志,等.近50年中国地面气候变化基本特[J].气象学报,2005,63(6):942-956.
[11] 邹旭恺,张 强,叶殿秀.长江三峡库区连阴雨的气候特征分析[J].灾害学,2005,20(1):84-89.
[12] 赵玉春,周月华.三峡地区连阴雨气候特征分析[J].湖北气象,2002,21(4):3-6.
[13] 魏凤英.现代气候统计诊断与预测技术[M].第2版.北京:气象出版社,2007:37-41.
[1] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[2] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[3] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[4] 韩林峰, 王平义, 刘晓菲. 长江中下游人工鱼礁水动力特性实验研究[J]. 长江流域资源与环境, 2016, 25(08): 1238-1246.
[5] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
[6] 闪丽洁, 张利平, 陈心池, 杨卫. 长江中下游流域旱涝急转时空演变特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2100-2107.
[7] 刘星根, 李昌彦, 吴敦银. 近60年赣江水沙变化特征及影响因素分析[J]. 长江流域资源与环境, 2015, 24(11): 1920-1928.
[8] 秦鹏程, 刘敏. 气象干旱诊断评估方法及其在长江中下游地区的应用[J]. 长江流域资源与环境, 2015, 24(11): 1969-1976.
[9] 吉中会, 单海燕. 长江中下游地区旱涝急转的阈值诊断及危险性评估[J]. 长江流域资源与环境, 2015, 24(10): 1793-1798.
[10] 王蒙, 殷淑燕. 近52 a长江中下游地区极端降水的时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1221-1229.
[11] 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-.
[12] 王红丽,| 刘 健 | 况雪源. 四种再分析资料与长江中下游地区降水观测资料的对比研究[J]. 长江流域资源与环境, 2008, 17(5): 703-703.
[13] 余世鹏, 杨劲松, 刘广明, 李冬顺. 三峡调蓄过渡期长江河口地区不同水文年土壤水盐变化特征[J]. 长江流域资源与环境, 2008, 17(3): 414-414.
[14] 王学雷,许厚泽,蔡述明. 长江中下游湿地保护与流域生态管理[J]. 长江流域资源与环境, 2006, 15(5): 564-568.
[15] 王龙学,寿绍文,杨金虎. 长江中下游地区汛期暴雨频次的时空分布特征[J]. 长江流域资源与环境, 2006, 15(4): 541-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方元平,刘胜祥,项 俊,葛继稳. 湖北省榉树自然种群分布研究[J]. 长江流域资源与环境, 2007, 16(6): 744 .
[2] 刘 慧. 长江中游地区洪涝灾害的土地利用思考[J]. 长江流域资源与环境, 2004, 13(6): 616 -620 .
[3] 赵 艳, 李佳佳, Carl Sayer. 浅水湖泊孢粉和植物残体对水生植被的表现率[J]. 长江流域资源与环境, 2005, 14(4): 456 -459 .
[4] 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229 -233 .
[5] 刘兆顺, 李淑杰. 基于生态系统服务价值的土地利用结构优化——以重庆万州为例[J]. 长江流域资源与环境, 2009, 18(7): 646 .
[6] 段七零. 长江流域的空间结构研究[J]. 长江流域资源与环境, 2009, 18(9): 789 .
[7] 许乃政 , 张桃林, 王兴祥, 刘红樱, 梁晓红. 长江三角洲地区土壤无机碳库研究[J]. 长江流域资源与环境, 2009, 18(11): 1038 .
[8] 李中强, 王双玲, 杨梅, 徐. 基于生态敏感性分析的湖泊保护与利用——以湖北省斧头湖为例[J]. 长江流域资源与环境, 2010, 19(06): 714 .
[9] 陈姗姗, 束炯, 徐建中. 中国若干典型城市对流层NO2时空分布特征[J]. 长江流域资源与环境, 2010, 19(12): 1484 .
[10] 王军光, 李朝霞, 蔡崇法, 郭忠录, 杨伟. 坡面冲刷过程中红壤分离速率定量研究[J]. 长江流域资源与环境, 2011, 20(1): 96 .