长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 486-496.doi: 10.11870/cjlyzyyhj201603016

• 生态环境 • 上一篇    下一篇

1983~2012年长江流域地表净辐射变化特征

潘鑫1,2,3, 刘元波1,2   

  1. 1. 中国科学院流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院南京地理与湖泊研究所, 江苏 南京 210008;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2014-07-25 修回日期:2014-12-29 出版日期:2016-03-20
  • 通讯作者: 刘元波 E-mail:ybliu@niglas.ac.cn
  • 作者简介:潘鑫(1989~),男,博士研究生,主要从事地表水热通量定量遥感研究. E-mail:px1013@163.com
  • 基金资助:
    国家自然科学重点基金(41430855);国家重点基础研究发展计划(973计划)项目(2012CB417000);中国科学院南京地理与湖泊研究所"一三五"重点项目(NIGLAS2012135001)

SPATIO-TEMPORAL VARIATION OF SURFACE NET RADIATION OVER THE YANGTZE RIVER BASIN DURING 1983-2012

PAN Xin1,2,3, LIU Yuan-bo1,2   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing 210008, China;
    2. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-07-25 Revised:2014-12-29 Online:2016-03-20
  • Supported by:
    the State Key Program of National Science Foundation of China (41430855);the 973 Program of National Basic Research Program of China(2012CB417000);the Key Program of Nanjing Institute of Geography and Limnologyof the ChineseAcademy of Sciences (NIGLAS2012135001)

摘要: 本文采用统计相关分析、Morlet小波分析、Rodionov时间序列分析与GIS空间分析等技术方法,分析了1983年7月至2012年9月长江流域SRB和CERES地表净辐射月产品的时空变化特征。结果表明:拟合后遥感产品比气象辐射站点观测值整体高15.8%,平均误差为15.31 W/m2,均方根误差为21.58 W/m2。长江流域地表净辐射多年均值为78.0 W/m2,整体呈下降趋势,于1996年突降,存在16年和10年周期;季相上,呈夏 > 春 > 秋 > 冬。空间上,呈现西部地区 > 东部地区 > 中部地区;1996~2012年相较1983~1995年净辐射整体下降,其中上游流域降幅大于中下游;净辐射降低主要出现在5~7月,降幅较大地区主要是长江上游流域部分地区和长江中游流域纬度较低地区。研究结果对于认识长江流域的气候变化条件下的能量和水分循环过程等具有重要意义。

关键词: SRB, CERES, 长江流域, 地表净辐射, 时空特征变化

Abstract: Surface net radiation is the main energy source which drives atmospheric movement. It determinates evapotranspiration,photosynthesis and the temperature of the Earth's surface and atmosphere, and plays an important role in the interactions between the surface and the atmosphere. This paper addresses the spatio-temporal variation of surface net radiationusing satellite-retrieved flux data over the Yangtze River Basin during 1983.7-2012.9. The data are composed of the surface radiation budget (SRB) and the Clouds and the Earth's Radiant Energy System (CERES) products. Statistical correlation analysis, Morlet wavelet analysis, Rodionovtime series analysis and GIS spatial analysis are applied. Our evaluation showed that the fittingsatellite-retrieved surface net radiationagreed well with meteorological observations, with an overestimation of 15.8%, with a mean error of 15.31 W/m2, and a root mean square error of 21.58 W/m2(more than 99.99 percent confidence level). The accuracy of the fitting data meets the requirement of regional atmospheric research.From a spatial perspective, the maximum net radiation appeared at the western part of the Yangtze River Basin, followed by the eastern and the middle parts. The net radiationhad seasonal variations with a maximum in summer and a minimum in winter (a maximum value of 120.5 W/m2 in July and a minimum value of 32.1 W/m2 in December). The dominant inter-annual cycles include 16 and 10 year. From 1983.7 to 2012.9, the multi-year mean of surface net radiation was 78.0 W/m2, and it had a decreasing trend with an abrupt decline in 1996. Net radiation d uring 1996-2012 is less than that during 1983-1995 in all the Yangtze River Basin, with more decrease in the upper reaches than in the middle and lower reaches of river basin. The reduction mainly happened from May to July, especially in June with a reduction of up to 20 W/m2. The main regions with a large reduction of surface net radiation are the upper reaches and the low latitude regions of the middle and lower reaches of the Yangtze River Basin. Overall, the present study is valuable for understanding of the energy and water cycles in the Yangtze River Basin.

Key words: SRB, CERES, Yangtze River Basin, surface net radiation, spatio-temporal variation

中图分类号: 

  • P404
[1] 贺庆棠. 气象学[M]. 2版. 北京:中国林业出版社, 1988:17-52.[HE Q S. Meteorology[M]. 2nd ed. Beijing:China Forestry Publishing, 1988:17-52.]
[2] ALADOS I, FOYO-MORENO I, OLMO F J, et al. Relationship between net radiation and solar radiation for semi-arid shrub-land[J]. Agricultural and Forest Meteorology, 2003, 116(3/4):221-227.
[3] 孙甲岚, 雷晓辉, 蒋云钟, 等. 长江流域上游气温、降水及径流变化趋势分析[J]. 水电能源科学, 2012, 30(5):1-4.[SUN J L, LEI X H, JIANG Y Z, et al. Variation trend analysis of meteorological variables and runoff in upper reaches of Yangtze River[J]. Water Resources and Power, 2012, 30(5):1-4.]
[4] ZHANG Y C, ROSSOW W B, STACKHOUSEJr P, et al. Decadal variations of global energy and ocean heat budget and meridional energy transports inferred from recent global data sets[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2007,112(D22).
[5] JIMÉNEZ-MUÑOZ J C, SOBRINO J A, MATTAR C. Recent trends in solar exergy and net radiation at global scale[J]. Ecological Modelling, 2012, 228(1):5-9.
[6] 高扬子, 何洪林, 张黎, 等. 近50年中国地表净辐射的时空变化特征分析[J]. 地球信息科学学报, 2013, 1(002):1-10.[GAO Y Z, HE H L, ZHANG L, et al. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years[J]. Journal of Geo-Information Science, 2013, 1(002):1-10.]
[7] 翁笃呜, 孙治安, 史兵. 中国地表净辐射的气候学研究[J]. 南京气象学院学报, 1988, 11(2):132-143, 263.[WENG D W, SUN Z A, SHI B. A climatological study of the surface net radiation over China[J]. Journal of Nanjing Institute of Meteorology, 1988, 12(2):132-143, 263.]
[8] 李帅, 何清, 周立平, 等. 塔克拉玛干沙漠腹地净辐射变化特征[J]. 干旱区研究, 2009, 26(5):644-648.[LI S, HE Q, ZHOU L P, et al. Research on net radiation characteristics at the hinterland of the Taklimakan desert[J]. Arid Zone Research, 2009, 26(5):644-648.]
[9] 王超, 韦志刚, 李振朝, 等. 敦煌戈壁地区净辐射变化特征[J]. 干旱区研究, 2012, 29(2):251-256.[WANG C, WEI Z G, LI Z C, et al. Study on variation of net radiation in the Dunhuang Gobi[J]. Arid Zone Research, 2012, 29(2):251-256.]
[10] 马耀明, 王介民. 黑河实验区地表净辐射区域分布及季节变化[J]. 大气科学, 1997, 21(6):743-749.[MA Y M, WANG J M. The distribution and seasonal variation of regional net radiation in HEIFE area[J]. Scientia Atmospherica Sinica, 1997, 21(6):743-749.]
[11] 杜建飞. 我国东部地区地面净辐射的卫星遥感研究[D]. 南京气象学院硕士学位论文, 2004:24-39.[DU J F.The research on ground net radiation retrieved by satellite remote sensing in eastern China[D]. Nanjing:Master Dissertation of Nanjing Institute of Meteorology, 2004:24-39.]
[12] 叶晶, 刘辉志, 李万彪, 等. 利用MODIS数据直接估算晴空区干旱与半干旱地表净辐射通量[J]. 北京大学学报(自然科学版), 2010, 46(6):40-49.[YE J, LIU H Z, LI W B, et al. Estimation of the net radiation over arid and semiarid areasonly using MODIS data for clear sky days[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6):40-49.]
[13] 桂胜. 地表净辐射的卫星遥感研究[D]. 武汉:武汉大学博士学位论文, 2010:1-30.[GUI S. Satellite remote sensing of surface net radiation.Wuhan:Doctor Dissertation of Wuhan University, 2010:1-30.]
[14] ØRBÆK J B, HISDAL V, SVAASAND L E. Radiation climate variability in Svalbard:surface and satellite observations[J]. Polar Research,1999,18(2):127-134.
[15] LIN B, STACKHOUSEJr P W, MINNIS P, et al. Assessment of global annual atmospheric energy balance from satellite observations[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2008,113(D16).
[16] WILD M, FOLINI D, SCHÄR C, et al. The global energy balance from a surface perspective[J]. Climate Dynamics, 2013, 40(11/12):3107-3134.
[17] 蒋兴文, 李跃清. 青藏高原地表辐射的气候特征[J]. 资源科学, 2010, 32(10):1932-1942.[JIANG X W, LI Y Q. Climatological characteristics of surface radiation over the Tibetan Plateau[J]. Resources Science, 2010, 32(10):1932-1942.]
[18] PINKER R T, LASZLO I.Modeling surface solar irradiance for satellite applications on a global scale[J].Journal of Applied Meteorology, 1992, 31(2):194-211.
[19] WIELICKI B A, BARKSTROM B R, BAUM B A, et al. Clouds and the Earth's Radiant Energy System (CERES):Algorithm overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1127-1141.
[20] 宋廷山, 吴风庆, 尉雪波. 应用统计学:以Excel为分析工具[M]. 成都:西南财经大学出版社, 2006:226-262.[SONG T S, WU F Q, WEI X B.Applied statistics:analysis tools using excel[M]. Chengdu:Southwestern university of finance and economics press, 2006:226-262.
[21] 毕云, 许利. 用一维Morlet小波变换对降水作诊断分析[J]. 内蒙古气象, 2000(4):26-28.[BI Y, XU L. Using a one-dimensional Morlet wavelet transform to make diagnosis analysis on precipitation[J]. Meteorology Journal of Inner Mongolia, 2000(4):26-28.]
[22] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[23] LIU D L, LIU X Z, LI B C, et al.Multiple time scale analysis of river runoff using wavelet transform for Dagujia River Basin,Yantai,China[J]. Chinese Geographical Science, 2009, 19(2):158-167.
[24] 尹继尧, 朱元清, 宋治平, 等. Morlet小波显著性检验和精度分析在地磁场和地震活动性周期分析中的应用[J]. 地震学报, 2011, 33(5):663-671.[YIN J Y, ZHU Y Q, SONG Z P, et al. Significance test and precision analysis of Morlet wavelet:Application to studying periodic variation of earthquake activity and geomagnetic field[J]. Acta Seismologica Sinica, 2011, 33(5):663-671.]
[25] 刘元波, 张奇, 刘健, 等. 鄱阳湖流域气候水文过程及水环境效应[M]. 北京:科学出版社, 2012:100-103.[LIU Y B, ZHANG Q, LIU J, et al. Climatic, hydrologic and environmental change in Poyang lake basin[M]. Beijing:Science Press, 2012:100-103.]
[26] 余世鹏, 杨劲松, 王相平, 等. 滨海滩涂地区降水变化的多尺度周期特征分析与趋势预测[J]. 中国农业气象, 2013, 34(4):377-383.[YU S P, YANG J S, WANG X P, et al. Multi-scale periodic analysis and trend prediction for precipitation dynamics in Coastal Tidal Flat Region[J]. Chinese Journal of Agrometeorology, 2013, 34(4):377-383.]
[27] RODIONOV S N.A sequential algorithm for testing climate regime shifts[J]. Geophysical Research Letters, 2004,31(9), doi:10.1029/2004GL019448.
[28] RODIONOV S N. A sequential method for detecting regime shifts in the mean and variance[J]. Seattle, Washington:University of Washington, 2005:68-72.
[29] MARTY C. Regime shift of snow days in Switzerland[J]. Geophysical Research Letters, 2008, 35(12), doi:10.1029/2008GL033998.
[30] OVERLAND J, RODIONOV S, MINOBE S, et al. North Pacific regime shifts:Definitions, issues and recent transitions[J]. Progress in Oceanography, 2008, 77(2):92-102.
[31] LIU Y B, WU G P, ZHAO X S. Recent declines in China's largest freshwater lake:trend or regime shift?[J]. Environmental Research Letters, 2013, 8(1):014010.
[32] 黄杏元, 马劲松, 汤勤. 地理信息系统概论[M]. 2版. 北京:高等教育出版社, 2001:141-193.[HUANG X Y, MA J S, TANG Q. Introduction to geographical information system[M]. 2nd ed. Beijing:Higher Education Press, 2001:141-193.]
[33] 李晓军. GIS空间分析方法研究[D]. 杭州:浙江大学硕士学位论文, 2007:2-7.[LI X J. Study of GIS-based spatial analysis methods[D]. Hangzhou:Master Dissertation of Zhejiang University, 2007:2-7.]
[34] 杨志恒. GIS空间分析研究进展综述[J]. 安徽农业科学, 2012, 40(3):1918-1919.[YANG Z H. Review on research progress of GIS spatial analysis[J]. Journal of Anhui Agricultural Sciences, 2012, 40(3):1918-1919.]
[35] SUTTLES J T, OHRING G. Surface radiation budget for climate applications:Reference Publication 1169[R]. Washington, DC:NASA, 1986:1-132.
[36] RASCHKE E, CATTLE H, LEMKE P, et al. Report on the workshop on polar radiation fluxes on polar radiation fluxes and sea-ice modelling[R]. WMO/TD 442. Bremerhaven, Germany:World Climate Research Program, 1992.
[37] 田国良, 柳钦火, 陈良富, 等. 热红外遥感[M]. 2版. 北京:电子工业出版社, 2014:288-326.[TIAN G L, LIU Q H, CHEN L F, et al. Thermal infrared remote sensing[M]. 2nd ed. Beijing:Publishing House of Electronics Industry, 2014:288-326.]
[38] 王介民, 高峰. 关于地表反照率遥感反演的几个问题[J]. 遥感技术与应用, 2004, 19(5):295-300.[WANG J M, GAO F. Discussion on the problems on land surface albedo retrieval by remote sensing data[J]. Remote Sensing Technology and Application, 2004, 19(5):295-300.]
[39] LEAN J. The Sun's variable radiation and its relevance for earth[J]. Annual Review of Astronomy and Astrophysics, 1997, 35(1):33-67.
[40] 刘长坤, 王艳君, 郭媛. 1960年以来长江流域太阳总辐射的时空变化[J]. 南京信息工程大学学报(自然科学版), 2012, 4(3):233-240.[LIU C K, WANG Y J, GUO Y, Spatial-temporal variations of global solar radiation over the Yangtze River basin since 1960[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2012, 4(3):233-240.]
[41] LIANG F, XIA X A. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000[J]. Annales Geophysicae, 2005, 23(7):2425-2432.
[42] 王一鸣. 中国城镇化进程、挑战与转型[J]. 中国金融, 2010, (4):32-34.[WANG Y M.China's urbanization process, challenge and transformation[J]. China Finance, 2010, (4):32-34.
[43] 周秀骥, 李维亮, 罗云峰. 中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟[J]. 大气科学, 1998, 22(4):418-427.[ZHOU X J, LI W L, LUO Y F. Numerical simulation of the aerosol radiative forcing and regional climate effect over China[J]. Scientia Atmospherica Sinica, 1998, 22(4):418-427.]
[44] 孙玲. 中国近三十年气溶胶变化特征及与降水关系的研究[D]. 南京:南京信息工程大学硕士学位论文, 2011.[SUN L. The characteristics of aerosol in China and its effect on precipitation in recent 30 years[D]. Nanjing:Master Dissertation of Nanjing University of Information Science & Technology, 2011.]
[45] 翁笃鸣. 青藏高原地表净辐射若干重要特征研究[J]. 南京气象学院学报, 1991, 14(2):151-159.[WENGD M. Some major features of surface net radiation in the Qinghai-Xizang Plateau[J]. Journal of Nanjing Institute of Meteorology, 1991, 14(2):151-159.]
[46] 李培基. 青藏高原积雪对全球变暖的响应[J]. 地理学报, 1996, 51(3):260-265.[LI P J. Response of Tibetan snow cover to global warming[J]. Acta Geographica Sinica, 1996, 51(3):260-265.]
[1] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[2] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[3] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[4] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[5] 邵骏, 欧应钧, 陈金凤, 郭卫. 基于水贫乏指数的长江流域水资源安全评价[J]. 长江流域资源与环境, 2016, 25(06): 889-894.
[6] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[7] 杜耘. 保护长江生态环境,统筹流域绿色发展[J]. 长江流域资源与环境, 2016, 25(02): 171-179.
[8] 卢新海, 柯善淦. 基于生态足迹模型的区域水资源生态补偿量化模型构建——以长江流域为例[J]. 长江流域资源与环境, 2016, 25(02): 334-341.
[9] 张雷, 鲁春霞, 李江苏. 中国大河流域开发与国家文明发育[J]. 长江流域资源与环境, 2015, 24(10): 1639-1645.
[10] 白淑英, 顾海敏, 史建桥, 魏楚京. 近50 a长江流域暴雨日数时空变化分析[J]. 长江流域资源与环境, 2015, 24(07): 1255-1262.
[11] 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(06): 971-977.
[12] 段七零. 长江流域的空间结构研究[J]. 长江流域资源与环境, 2009, 18(9): 789-.
[13] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[14] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241-247.
[15] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[2] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[3] 龙开胜, 陈利根, 李明艳. 工业化、城市化对耕地数量变化影响差异分析[J]. 长江流域资源与环境, 2008, 17(4): 579 .
[4] 赵 媛,郝丽莎. 江苏省电力工业空间结构优化研究[J]. 长江流域资源与环境, 2006, 15(3): 292 -297 .
[5] 张 燕,彭补拙,窦贻俭,金 峰,杨 浩. 水质约束条件下确定土壤允许流失量的方法[J]. 长江流域资源与环境, 2005, 14(1): 109 -113 .
[6] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60 .
[7] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .
[8] 高永霞, 朱广伟,逄 勇. 消浪工程对太湖底泥再悬浮及营养盐释放的影响[J]. 长江流域资源与环境, 2007, 16(3): 357 .
[9] 窦 明,谢 平,姚堡垒,李桂秋. 中线调水对汉江下游枯水期的水安全影响研究[J]. 长江流域资源与环境, 2008, 17(5): 699 .
[10] 赵姚阳 , 杨炬烽. 我国农产品贸易中的虚拟耕地交易分析[J]. 长江流域资源与环境, 2010, 19(2): 192 .