长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1934-1944.doi: 10.11870/cjlyzyyhj2016012018

• 自然灾害 • 上一篇    

基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化

徐明1, 王晓芳1, 高琦2, 汪小康1, 赖安伟1   

  1. 1. 中国气象局武汉暴雨研究所, 湖北 武汉 430205;
    2. 武汉中心气象台, 湖北 武汉 430074
  • 收稿日期:2016-04-01 修回日期:2016-06-24 出版日期:2016-12-20
  • 作者简介:徐明(1983~),男,工程师,硕士,主要研究方向为暴雨机理.E-mail:ihrxum@163.com
  • 基金资助:
    国家自然科学基金(41375057,91637211,41328007);灾害天气国家重点实验室基金项目(2014LASW-A05);湖北省气象局科技发展基金(2016Q04);湖北省重点实验室暴雨研究开放基金(IHR201502)

ANALYSIS OF DIURNAL VARIATION OF MEIYU SEASON RAINFALL OVER THE YANGTZE RIVER BASIN BY TRMM SATELLITE DATA

XU Ming1, WANG Xiao-fang1, GAO Qi2, WANG Xiao-kang1, LAI An-wei1   

  1. 1. Institute of Heavy Rain, CMA, Wuhan 430205, China;
    2. Wuhan Meteorological Center, Wuhan 430074, China
  • Received:2016-04-01 Revised:2016-06-24 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation(41375057,91637211,41328007);Disaster Weather Fund Projects of State Key Laboratory(2014LASW-A05);Science and Technology Development Fund of Hubei Meteorology Bureau(2016Q04);Heavy Rains Open Fund Research of Hubei Province Key Laboratory(IHR201502)

摘要: 利用1998~2013年热带测雨卫星TRMM 3B42降水率资料以及NCEP/CFSR温度场、气压场和风场等再分析格点资料等,从气候学角度揭示了长江流域梅雨季节降水和对流的日变化特征,探讨了典型和非典型梅雨锋年降水日变化差异,分析了大气环境场要素的日变化特征及其对降水和对流日变化影响。结果表明:(1)强降水在夜间发生在长江上游,白天发生在长江中下游。降水日变化特征显著,长江上游、盆地以东的中游以及中下游的沿江以南地区降水日峰值分别出现在午夜、清晨08时以及傍晚17时。沿江以北地区降水表现出半日循环,具有08时和17时两个峰值,午后峰值明显强于清晨。(2)长江中游地区降水日位相较上游地区延迟约6 h,下游地区日位相进一步向后推移,同时下游地区降水强度和范围明显强于上游,降水日较差也更明显。(3)典型梅雨锋年和近15年梅雨季节平均的降水日变化分布特征较为一致,非典型梅雨锋年较前两者日峰值出现时间明显提前。(4)短时强降水和深对流有较好的对应关系,白天高发区位于长江下游,夜间位于上游。(5)大气温压场在梅雨锋两侧显著的日变化差异使梅雨锋强度和结构在昼夜形成了差异,并使低层风场的辐合位置产生了日变化,这些大气环境场的日变化最终导致了梅雨期对流和降水的日变化。

关键词: TRMM, 长江流域, 梅雨季节降水, 日变化

Abstract: Using the TRMM satellite precipitation data and NCEP/CFSR reanalysis data of temperature, high and wind filed from 1998 to 2013, the characteristics of diurnal variation of Meiyu season precipitation and convection over the Yangtze River Basin were revealed from the point of Climatology. The difference of diurnal variation of rainfall between typical and non-typical Meiyu years, the diurnal variation characteristics of atmospheric elements and their effects on the precipitation and convection were also analyzed. The results showed that, (1) the intense rainfall mainly occurred in the eastern Tibetan Plateau to the Sichuan basin during the night, in the middle and lower reaches of the Yangtze River during the day. The features of diurnal variation of precipitation were significant. The precipitation day peaks in the eastern Tibetan Plateau to the Sichuan basin, the middle reaches of the Yangtze River and Southern China respectively occurred on the middle night, 08 h early morning and 17 h late afternoon. The rainfall in the Yangtze-Huaihe river basin showed semidiurnal cycle, with the two peaks of 08 and 17 h, the afternoon peak was much stronger than the morning. (2) The daily rainfall in the middle reaches was delayed 6 h than the upper reaches of Yangtze River, the lower reaches was further backward, but the intensity and scope of precipitation was much stronger than the upper reaches. (3) The distribution of diurnal variation of typical Meiyu year is consistent to the nearly 15 years of Meiyu season average. The evolution form of non-typical was similar to the above two, only the daily peak time was ahead. (4) The short-time heavy rainfall had a good relationship to the deep convection. The high frequency area was happed in the lower reaches of Yangtze River (the eastern Tibetan Plateau to the Sichuan basin) during the day (night). (5) The diurnal variation of atmospheric temperature and pressure caused the intensity and structure differences of Meiyu front between the day and night. The lower troposphere wind speed was found to gradually weaken in the day, increase in the night, and produced diurnal variation of position of convergence at low level wind filed. These resulted in the diurnal variation of the rainfall and convection of Meiyu season.

Key words: TRMM, the Yangtze River basin, Meiyu season rainfall, diurnal variation

中图分类号: 

  • TV125
[1] 丁一汇, 柳俊杰, 孙颖, 等. 东亚梅雨系统的天气-气候学研究[J]. 大气科学, 2007, 31(6):1082-1101.[DING Y H, LIU J J, SUN Y, et al. A study of the synoptic-climatology of the Meiyu system in east Asia[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6):1082-1101.]
[2] 吕炯. 巴山夜雨[J]. 气象学报, 1942, 16(S1):36-53.[LEE J. The nighttime precipitation in the red basin of Szechuan, China[J]. Journal of Meteorological Research, 1942, 16(S1):36-53.]
[3] 丁一汇, 王笑芳. 1983年长江中游梅雨期的热源和热汇分析[J]. 热带气象学报, 1988, 4(2):134-145.[DING Y H, WANG X F. An analysis of distribution of apparent heat sources and sinks over the middle Reaches of the Yangtze river during the Meiyu season in 1983[J]. Journal of Tropical Meteorology, 1988, 4(2):134-145.]
[4] YU R C, ZHOU T J, XIONG A Y, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 2007, 34(1):L01704.
[5] ZHOU T J, YU R C, CHEN H M, et al. Summer precipitation frequency, intensity, and diurnal cycle over China:a comparison of satellite data with rain gauge observations[J]. Journal of Climate, 2008, 21(16):3997-4010.
[6] 赵玉春, 徐明, 王叶红, 等. 2010年汛期长江中游对流降水日变化特征分析[J]. 气象, 2012, 38(10):1196-1206.[ZHAO Y C, XU M, WANG Y H, et al. A characteristic analysis on diurnal variations of convective rainfall along the Yangtze river middle valleys in 2010 flooding season[J]. Meteorological Monthly, 2012, 38(10):1196-1206.]
[7] 王晓芳, 汪小康, 徐桂荣. 2010年长江中游梅雨期β中尺度系统环境特征的分析[J]. 高原气象, 2013, 32(3):750-761.[WANG X F, WANG X K, XU G R. Analysis on enviroment of Meso-β-Scale system of continuous heavy rainstorm over the middle reach of Yangtze River during Meiyu period in 2010[J]. Plateau Meteorology, 2013, 32(3):750-761.]
[8] 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展[J]. 气象学报, 2014, 72(5):948-968.[YU R C, LI J, CHEN H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Acta Meteorologica Sinica, 2014, 72(5):948-968.]
[9] SOROOSHIAN S, GAO X, HSU K, et al. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J]. Journal of Climate, 2002, 15(9):983-1001.
[10] 骆三, 苗峻峰, 牛涛, 等. TRMM测雨产品3B42与台站资料在中国区域的对比分析[J]. 气象, 2011, 37(9):1081-1090.[LUO S, MIAO J F, NIU T, et al. A comparison of TRMM 3B42 products with rain gauge observations in China[J]. Meteorological Monthly, 2011, 37(9):1081-1090.]
[11] NESBITT S W, ZIPSER E J. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements[J]. Journal of Climate, 2003, 16(10):1456-1475.
[12] 白爱娟, 刘长海, 刘晓东. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J]. 地球物理学报, 2008, 51(3):704-714.[BAI A J, LIU C H, LIU X D. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese Journal of Geophysics, 2008, 51(3):704-714.]
[13] 白爱娟, 刘晓东, 刘长海. 青藏高原与四川盆地夏季降水日变化的对比分析[J]. 高原气象, 2011, 30(4):852-859.[BAI A J, LIU X D, LIU C H. Contrast of diurnal variations of summer precipitation between the Tibetan Plateau and Sichuan Basin[J]. Plateau Meteorology, 2011, 30(4):852-859.]
[14] 胡亮, 杨松, 李耀东. 青藏高原及其下游地区降水厚度季、日变化的气候特征分析[J]. 大气科学, 2010, 34(2):387-398.[HU L, YANG S, LI Y D. Diurnal and seasonal climatology of precipitation depth over the Tibetan Plateau and its downstream regions[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(2):387-398.]
[15] 傅云飞, 曹爱琴, 李天奕, 等. 星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征[J]. 气象学报, 2012, 70(3):436-451.[FU Y F, CAO A Q, LI T Y, et al. Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation radar[J]. Acta Meteorologica Sinica, 2012, 70(3):436-451.]
[16] 毛江玉, 吴国雄. 基于TRMM卫星资料揭示的亚洲季风区夏季降水日变化[J]. 中国科学:地球科学, 2012, 42(4):564-576.[MAO J Y, WU G X. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data[J]. Science China Earth Science, 2012, 55(4):554-566.]
[17] 周胜男, 罗亚丽, 汪会. 青藏高原、中国东部及北美副热带地区夏季降水系统发生频次的TRMM资料分析[J]. 气象, 2015, 41(1):1-16.[ZHOU S N, LUO Y L, WANG H. Analysis of occurrence frequency of precipitation feature over Tibetan Plateau, East China and subtropical north America in boreal summer using TRMM data[J]. Meteorological Monthly, 2015, 41(1):1-16.]
[18] 孙辉, 刘晓东, 刘长海, 等. 青藏高原夏季降水日变化的高分辨率数值模拟[J]. 热带气象学报, 2013, 29(6):1008-1018.[SUN H, LIU X D, LIU C H, et al. High-resolution numerical simulation of the diurnal cycle in summertime precipitation over the Tibetan Plateau[J]. Journal of Tropical Meteorology, 2013, 29(6):1008-1018.]
[1] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[2] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[3] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[4] 邵骏, 欧应钧, 陈金凤, 郭卫. 基于水贫乏指数的长江流域水资源安全评价[J]. 长江流域资源与环境, 2016, 25(06): 889-894.
[5] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[6] 潘鑫, 刘元波. 1983~2012年长江流域地表净辐射变化特征[J]. 长江流域资源与环境, 2016, 25(03): 486-496.
[7] 杜耘. 保护长江生态环境,统筹流域绿色发展[J]. 长江流域资源与环境, 2016, 25(02): 171-179.
[8] 卢新海, 柯善淦. 基于生态足迹模型的区域水资源生态补偿量化模型构建——以长江流域为例[J]. 长江流域资源与环境, 2016, 25(02): 334-341.
[9] 张雷, 鲁春霞, 李江苏. 中国大河流域开发与国家文明发育[J]. 长江流域资源与环境, 2015, 24(10): 1639-1645.
[10] 费明哲, 张增信, 原立峰, 王言鑫, 周洋. TRMM降水产品在鄱阳湖流域的精度评价[J]. 长江流域资源与环境, 2015, 24(08): 1322-1330.
[11] 白淑英, 顾海敏, 史建桥, 魏楚京. 近50 a长江流域暴雨日数时空变化分析[J]. 长江流域资源与环境, 2015, 24(07): 1255-1262.
[12] 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(06): 971-977.
[13] 段七零. 长江流域的空间结构研究[J]. 长江流域资源与环境, 2009, 18(9): 789-.
[14] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[15] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[4] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[5] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[6] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[9] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .