长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1305-1314.doi: 10.11870/cjlyzyyhj201508007

• 自然资源 • 上一篇    下一篇

1982~2010年洞庭湖流域植被指数的变化及其与气候因子的相关分析

郭晶1, 关华德1,2, 章新平1   

  1. 1. 湖南师范大学资源与环境科学学院, 湖南 长沙 410081;
    2. 澳大利亚弗林德斯大学环境学院, 澳大利亚 阿德莱德 5001
  • 收稿日期:2014-10-22 修回日期:2015-01-03 出版日期:2015-08-20
  • 作者简介:郭晶(1989~),女,硕士研究生,主要研究方向为洞庭湖流域植被覆盖变化及成因.E-mail:guojinghsd@163.com
  • 基金资助:
    湖南省"十二五"重点学科地理学和国家自然科学基金项目(41171318)

GROWING SEASON NDVI VARIATION IN THE DONGTING LAKE WATERSHED FROM 1982 TO 2010 AND THE CLIMATIC AND ANTHROPOGENIC INFLUENCES

GUO Jing1, GUAN Hua-de1,2, ZHANG Xin-ping1   

  1. 1. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China;
    2. School of the Environment, Flinders University, Adelaide 5001, Australia
  • Received:2014-10-22 Revised:2015-01-03 Online:2015-08-20
  • Contact: 关华德 E-mail:huade.guan@flinders.edu.au E-mail:huade.guan@flinders.edu.au

摘要: 基于GIMMS 3 g、PAL、LTDR V3、FASIR及MODIS 5种不同的遥感影像数据,及洞庭湖流域30个气象站点的气温、降水和日照时数月值数据,采用逐像元一元线性回归模型,对比分析了在不同数据集背景下的植被变化趋势,并基于时间序列长度以及数据精度的考虑,选择GIMMS 3 g作为研究洞庭湖流域植被覆盖变化的基础数据集,进而利用相关系数和多元线性回归分析模型探讨流域植被覆盖变化与降水、气温、日照时数的关系。结果表明:(1)过去29 a间,流域GIMMS 3 g NDVI在时空尺度上均以增加趋势为主,1998~2000年出现最大的降低,以植被覆盖较好的山区减少最快;(2)去除年际变化趋势和季节性影响的NDVI与同期降水量距平、累积3个月气温距平值及同期日照时数距平值相关性程度最高;(3)统计意义上,降水量、气温和日照时数解释洞庭湖流域植被月NDVI变化的37%,日照时数对该流域NDVI变化的影响最大,其次为降水和气温;(4)在时间和空间范畴,生长季NDVI可以作为反映洞庭湖流域森林覆盖率变化的指标。

关键词: MVC, 线性回归分析, 植被指数, 时空变化, 气候因子

Abstract: Trend and interannual variability of growing season vegetation cover were examined for the Dongting Lake Watershed over the period of 1982-2010, using GIMMS 3g together with other AVHRR NDVI products and MODIS vegetation index products. The four datasets of AVHRR showed a great similarity in spatial distribution of NDVI trends from 1982 to 1999, while comparison of MODIS EVI/NDVI and GIMMS 3 g during 2000-2010 showed a significant difference in NDVI trends between MODIS NDVI and GIMMS 3g. This is likely owing to MODIS NDVI saturation in the study area. Spatial distribution of trends resulting from GIMMS 3 g and MODIS EVI had some consistency. Thus GIMMS 3 g was selected for detailed analysis because of its long temporal coverage and consistency with other products. Possible influencing factors (precipitation, temperature, sunshine hours and vegetation cover) leading to interannual variations of growing season NDVI were explored using multiple linear regression and correlation analysis. The results indicate that an increasing NDVI trend occurred in the study area during the past 29 years, only 9.5% pixels in the Dongting Lake Watershed showed some NDVI reduction. The eastern, western and southern parts of the region covered by mountain forests experienced a large decreased in NDVI during 1998-2000. De-trended NDVI monthly anomaly was significantly correlated with de-trended concurrent precipitation anomaly, concurrent sunshine duration and cumulative three-month temperature anomaly. The three climate factors explained 37% temporal variability of de-trended growing season monthly NDVI of the study watershed, while these factors failed to explain the overall NDVI increase during 1982-2010. This suggests that the increase in NDVI is more likely associated with an increase in vegetation cover over the period likely owing to the improvement of social-economic condition in the study area. This is supported by good correlation between the NDVI trend and the government reported forest cover change, and consistent spatial distribution of growing season NDVI with that of actual forest cover in this watershed. Therefore, growing season NDVI can be used as an indicator for forest coverage changes in the Dongting Lake Watershed.

Key words: MVC, linear regression analysis, vegetation index, temporal and spatial variation, climate factors

中图分类号: 

  • TP79
[1] 孙红雨,王长耀,牛 铮,等.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间序列数据分析[J].遥感学报,1998,2(3): 204-210.
[2] PRINCE S D.A model of regional primary production for use with coarse resolution satellite data [J].International Journal of Remote Sensing,1991, 12(6):1313-1330.
[3] CARLSON T N,RIPLEY D A.On the relation between NDVI, fractional vegetation cover, and leaf area index [J].Remote Sensing of Environment,1997, 62(3):241-252.
[4] PIAO S L, WANG X H, PHILIPPE C, et al.Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 [J].Global Change Biology,2011,17:3228-3239.
[5] GONG P, LIU S.Change of surface cover greenness in China between 2000 and 2010 [J].Chinese Science Bulletin, 2012, 22: 2835-2845.
[6] 陈云浩,李晓兵,陈 晋,等.1983~1992年中国陆地植被NDVI演变特征的变化矢量分析[J].遥感学报,2002,6(1): 12-17.
[7] 周 峰,许有鹏,吕慧华.基于MODIS-EVI数据的长江三角洲地区植被变化的特征[J].长江流域资源与环境,2012,21(11): 1363-1369.
[8] 毛德华,王宗明,罗 玲,等.基于MODIS和AVHRR数据源的东北地区植被NDVI变化及其与气温和降水间的相关分析[J].遥感技术与应用,2012,27(1):77-85.
[9] 侯美亭,赵海燕,王 筝,等.基于GIMMS VGT和MODIS的中国东部植被指数对比分析[J].遥感技术与应用,2013,28(2): 290-299.
[10] 崔林丽,史 军,肖风劲,等.中国东部NDVI的变化趋势及其与气候因子的相关分析[J].资源科学,2010,32(1): 124-131.
[11] DONG J W,TAO F L,ZHANG G L.Trends and variation in vegetation greenness related to geographic controls in middle and eastern Inner Mongolia, China [J].Environment Earth Sciences,2011,62:245-25.
[12] 李春晖,杨志峰.黄河流域NDVI时空变化及其与降水/径流关系[J].地理研究,2004,23(6): 753-759.
[13] BECK H E, MCVICAR T R, VAN DIJK A I J M,et al.Global evaluation of four AVHRR NDVI data sets: Intercomparison and assessment against Landsat imagery [J]. Remote Sensing of Environment,2011,115:2547-2563.
[14] JIANG W G, HOU P, ZHU X H,et al. Analysis of vegetation response to rainfall with satellite images in Dongting Lake[J]. J Geogr Sci,2011, 21(1): 135-149.
[15] 张剑明,黎祖贤,章新平,等. 湖南省近46年来降水时空分布特征及趋势分析[J].水文,2009,29(4): 73-78.
[16] FENSHOLT R, RASMUSSEN K, NIELSEN T T, et al. Evaluation of Earth Observation based Long Term Vegetation Trends Intercomparing NDVI Time Series Trend Analysis Consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPORT VGT Data [J]. Remote Sensing of Environment, 2009,113(9):1886-1898.
[17] HOLBEN B N. Characteristics of Maximum-value Composite Image from Temporal AVHRR Data [J]. International Journal o f Remote Sensing, 1986,7 (10):1714-1734.
[18] HUETE A, DIDAN K, MIURAL T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J].Remote Sensing of Environment, 2002, 83:195-213.
[19] 叶 琦,赵 萍,孙 静.基于MODIS NDVI与EVI的皖江流域植被覆盖比较分析[J].长江流域资源与环境,2012,21(3): 361-367.
[20] 林 辉,熊育久,万玲凤,等.湖南省MODIS遥感植被指数的时空变化[J].应用生态学报,2007,18(3):581-585.
[21] FENSHOLT R, SIMON R. Evaluation of Earth Observation based global long term vegetation trends-Comparing GIMMS and MODIS global NDVI time series[J]. Remote Sensing of Environment , 2012,119 :131–147.
[22] PENG S S,CHEN A P,XU L A, et al. Recent change of vegetationgrowth trend in China[J].Environmental Research Letters,2011,6(4):044027,doi:10.1088/1748-9326/6/4/044027.
[23] JEONG S J, HO C H, GIM H J, et al.Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008[J].Global Change Biology, 2011, 17: 2385-2399.
[24] NEMANI R R,KEELING C D, HASHIMOTO H, et al. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999[R].New Rork:Science, 2003, Jun 6,300(5625):1560-1563.
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578-2587.
[3] 王水霞, 殷淑燕, 赵芮芮, 周亚利. 秦岭南部地区农业气候资源的变化及其对油菜的影响[J]. 长江流域资源与环境, 2017, 26(06): 882-893.
[4] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[5] 刘静, 殷淑燕. 1960~2014年秦岭南北无霜期时空变化特征及对比分析[J]. 长江流域资源与环境, 2017, 26(04): 615-623.
[6] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[7] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[8] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[9] 刘世杰, 苏舒, 梁亮, 童小华. 基于植被状态指数的干旱化特征及气候驱动因素分析——以江苏省为例[J]. 长江流域资源与环境, 2016, 25(12): 1927-1933.
[10] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[11] 何华春, 周汝佳. 基于景观格局的盐城海岸带土地利用时空变化分析[J]. 长江流域资源与环境, 2016, 25(08): 1191-1199.
[12] 李军, 王兆礼, 黄泽勤, 钟睿达, 卓圣峰, 陈希贤. 基于SPEI的西南农业区气象干旱时空演变特征[J]. 长江流域资源与环境, 2016, 25(07): 1142-1149.
[13] 李琪, 苏欢, 史雨涵, 王连喜, 吴东丽. 1961~2010年江浙沪地区夏季高温热浪时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 506-513.
[14] 王婷, 章新平, 黎祖贤, 罗紫东, 廖梦思, 刘娜. 近52年来洞庭湖流域气象干旱的时空分布特征[J]. 长江流域资源与环境, 2016, 25(03): 514-522.
[15] 赵筱青, 顾泽贤, 高翔宇. 人工园林大面积种植区土地利用/覆被变化对生态系统服务价值影响[J]. 长江流域资源与环境, 2016, 25(01): 88-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .