长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1842-1849.doi: 10.11870/cjlyzyyhj201612007

• 自然资源 • 上一篇    下一篇

长江中游洪湖至宜昌江段鱼类空间分布特征的水声学研究

段辛斌1, 谢意军1,2, 郭杰1, 王珂1, 刘绍平1, 陈大庆1   

  1. 1. 中国水产科学研究院长江水产研究所, 湖北 武汉 430223;
    2. 华中农业大学水产学院, 湖北 武汉 430070
  • 收稿日期:2016-03-29 修回日期:2016-06-24 出版日期:2016-12-20
  • 通讯作者: 刘绍平,E-mail:lsp@yfi.ac.cn E-mail:lsp@yfi.ac.cn
  • 作者简介:段辛斌(1972~),男,副研究员,主要从事鱼类资源方面研究.E-mail:duan@yfi.ac.cn
  • 基金资助:
    国家自然科学基金(51579247)

HYDROACOUSTIC SURVEYS ON TEMPORAL AND SPATIAL DISTRIBUTION OF FISHES IN THE SECTION FROM HONGHU TO YICHANG OF THE YANGTZE RIVER MIDDLE REACHES

DUAN Xin-bin1, XIE Yi-jun1,2, GUO Jie1, WANG Ke1, LIU Shao-ping1, CHEN Da-qing1   

  1. 1. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
    2. College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2016-03-29 Revised:2016-06-24 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation of China(51579247)

摘要: 为了解长江中游洪湖至宜昌江段鱼类时空分布变化,于2014~2015年的秋季、春季和夏季,使用Simrad EY60鱼探仪对该江段的鱼类时空分布特征进行了3次水声学调查。结果表明:鱼探仪探测获得的鱼类回波信号与湖底反射信号的图像均比较清晰,且图像的背景噪声较小,长江干流的鱼类多以个体形式进行活动,探测时未发现鱼群。夏季鱼类目标强度(TS值)最高(-47.2±8.6)dB,春季鱼类TS值最低(-60.0±6.4)dB,非参数检验结果显示,3个季节的鱼类TS值差异极其显著(P<0.01);3个季节该江段鱼类资源水平分布不均匀,鱼类最大密度分别为63.7 ind./1 000 m3(秋季)、141.4 ind./1 000 m3(春季)和266 ind./1 000 m3(夏季),且3个季节鱼类水平分布差异极显著(F=151.08,P<0.01);垂直水层方向上,3个季节的鱼类密度均表现出相同的分布特征,即表层 > 中层 > 底层,各水层3个季节之间的鱼类密度存在极显著性差异(df=2,P<0.01);在方差齐性下,采用LSD方法对3个季节各水层之间鱼类密度进行多重比较,结果显示秋季仅表层与底层之间鱼类密度均存在显著性差异(P<0.05);春季表层与中层、中层与底层之间鱼类密度均存在显著性差异(P<0.05);夏季表层、中层和底层两两之间鱼类密度均存在显著性差异(P<0.05)。该江段鱼类时空分布差异与鱼类的越冬、索饵、产卵等因素有关。

关键词: 长江中游, 鱼类资源, 时空分布, 水声学

Abstract: In order to better understand the spatial-temporal distribution of fish in the middle reach of Yangtze River from Honghu to Yichang section in 2014 and 2015, we applied hydroacoustic analysis with Simrad EY60 split-beam echo sounder, in autumn (October to November,2014), spring (April to May,2015), and summer (July,2015). The results showed that the echo image detection of the fishes in the Yangtze River are relatively clear, and the background noise is small, the lake bottom reflected signals are strong, the fish populations of the Yangtze River is relatively small, mostly individual activities. Nonparametric test results suggested the target strength (TS) of the fish varied significantly among seasons (P<0.01), being highest in summer (-47.2±8.6) dB and lowest (-60.0±6.4) dB in spring. The horizontal distribution of fish density was not homogeneous, and varied significantly among seasons (F=151.08, P<0.01). The maximum density was 63.7 ind./1000 m3, 141.4 ind./1000 m3, and 266 ind./1000 m3 in autumn, spring, and summer, respectively. Vertically, the fish abundance followed the following order:the surface layer > the middle layer > the bottom layer, and the distribution was the same in the three seasons, and fish density varied significantly in the same water layer among 3 seasons (df=2,P<0.01). Under the homogeneity of variance, the LSD method was applied for multiple comparison of fish density between each water layer in 3 seasons. The results suggested that the fish density varied significantly between surface layer and bottom layer in autumn (P<0.05), the fish density was not significantly different between surface layer and bottom layer in spring (P>0.05), the fish density varied significantly among layers in summer (P<0.05). The distribution was possibly caused by the winter migration, feeding migratory, reproductive migration, and some other factors.

Key words: the middle reach of Yangtze River, fish resources, temporal and spatial distribution, hydroacoustics

中图分类号: 

  • S932.4
[1] 詹秉义. 渔业资源评估[M]. 北京:中国农业出版社, 1995:236-253.
[2] JURVELIUS J, LEINIKKI J, MAMYLOV V, et al. Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus):a simultaneous up- and down-looking echo-sounding study[J]. Fisheries Research, 1996, 27(4):227-241.
[3] STOCKWELL J D, YULE D L, HRABIK T R, et al. Vertical distribution of fish biomass in Lake Superior:implications for day bottom trawl surveys[J]. North American Journal of Fisheries Management, 2007, 27(3):735-749.
[4] BURWEN D L, FLEISCHMAN S J. Evaluation of side-aspect target strength and pulse width as potential hydroacoustic discriminators of fish species in rivers[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 55(11):2492-2502.
[5] LILJA J, KESKINEN T, MARJOMÄKI T J, et al. Upstream migration activity of cyprinids and percids in a channel, monitored by a horizontal split-beam echosounder[J]. Aquatic Living Resources, 2003, 16(3):185-190.
[6] YULE D L. Comparison of horizontal acoustic and purse-seine estimates of salmonid densities and sizes in eleven Wyoming waters[J]. North American Journal of Fisheries Management, 2000, 20(3):759-775.
[7] PRCHALOVÁ M, DRAŠTÍK V, KUBEČKA J, et al. Acoustic study of fish and invertebrate behavior in a tropical reservoir[J]. Aquatic Living Resources, 2003, 16(3):325-331.
[8] BRANDT S B, GERKEN M, HARTMAN K J, et al. Effects of hypoxia on food consumption and growth of juvenile striped bass (Morone saxatilis)[J]. Journal of Experimental Marine Biology and Ecology, 2009, 381(S):S143-S149.
[9] 陈大庆, 段辛斌, 刘绍平, 等. 长江渔业资源变动和管理对策[J]. 水生生物学报, 2002, 26(6):685-690.[CHEN D Q, DUAN X B, LIU S P, et al. On the dynamics of fishery resources of the Yangtze River and its management[J]. Acta Hydrobiologica Sinica, 2002, 26(6):685-690.]
[10] 刘绍平, 邱顺林, 陈大庆, 等. 长江水系四大家鱼种质资源的保护和合理利用[J]. 长江流域资源与环境, 1997, 6(2):127-131.[LIU S P, QIU S L, CHEN D Q, et al. Protection and rational utilization of the germplasm resources of the four major Chinese carps in the Yangtze River system[J]. Resources and Environment in the Yangtze Basin, 1997, 6(2):127-131.]
[11] 长江四大家鱼产卵场调查队. 葛洲坝水利枢纽工程截流后长江四大家鱼产卵场调查[J]. 水产学报, 1982, 6(4):287-305.[Survey Team of Spawning Grounds of Domestic Fishes in Changjiang River. A survey on the spawning grounds of the "Four famous Chinese carps" in the Changjiang River after dammed by the key water control project at Gezhouba[J]. Journal of Fisheries of China, 1982, 6(4):287-305.]
[12] 邱顺林, 刘绍平, 黄木桂, 等. 长江中游江段四大家鱼资源调查[J]. 水生生物学报, 2002, 26(6):716-718.[QIU S L, LIU S P, HUANG M G, et al. Monitoring of spawning sites of four major Chinese carps in the middle section of Yangtze River[J]. Acta Hydrobiologica Sinica, 2002, 26(6):716-718.]
[13] 赵宪勇, 陈毓桢. 狭鳕(Theragra chalcogramma Pallas)目标强度的现场测定[J]. 中国水产科学, 1996, 3(4):19-27.[ZHAO X Y, CHEN Y Z. In situ target strength measurements on walleye Pollock (Theragra chalcogramma Pallas)[J]. Journal of Fishery Sciences of China, 1996, 3(4):19-27.]
[14] KIESER R, MULLIGAN T J. Analysis of echo counting data:a model[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1984, 41(3):451-458.
[15] BALK H. Development of hydroacoustic methods for fish detection in shallow water[D]. Norway:Doctor Dissertation of University of Oslo, 2001:191-208.
[16] 谭细畅, 史建全, 张宏, 等. EY60回声探测仪在青海湖鱼类资源量评估中的应用[J]. 湖泊科学, 2009, 21(6):865-872.[TAN X C, SHI J Q, ZHANG H, et al. Hydroacoustic assessment of fish resources in the Lake Qinghai with EY60 echosounder[J]. Journal of Lake Sciences, 2009, 21(6):865-872.]
[17] FOOTE K G. Fish target strengths for use in echo integrator surveys[J]. Journal of the Acoustical Society of American, 1987, 82(3):981-987.
[18] 段辛斌, 陈大庆, 李志华, 等. 三峡水库蓄水后长江中游产漂流性卵鱼类产卵场现状[J]. 中国水产科学, 2008, 15(4):523-532.[DUAN X B, CHEN D Q, LI Z H, et al. Current status of spawning grounds of fishes with pelagic eggs in the middle reaches of the Yangtze River after impoundment of the Three Gorges Reservior[J]. Journal of Fishery Sciences of China, 2008, 15(4):523-532.]
[19] 彭期冬, 廖文根, 李翀, 等. 三峡工程蓄水以来对长江中游四大家鱼自然繁殖影响研究[J]. 四川大学学报(工程科学版), 2012, 44(S2):228-232.[PENG Q D, LIAO W G, LI C, et al. Impacts of four major Chinese Carps' natural reproduction in the middle reaches of Yangtze River by three gorges project since the impoundment[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(S2):228-232.]
[20] YE S W, LI Z J, FENG G P, et al. Length-weight relationships for thirty fish species in Lake Niushan, a shallow macrophytic Yangtze Lake in China[J]. Asian Fisheries Science, 2007, 20:217-226.
[21] 唐启升, 王为祥, 陈毓桢, 等. 北太平洋狭鳕资源声学评估调查研究[J]. 水产学报, 1995, 19(1):8-20.[TANG Q S, WANG W X, CHEN Y Z, et al. Stock assessment of walleye Pollock in the north pacific ocean by acoustic survey[J]. Journal of Fisheries of China, 1995, 19(1):8-20.]
[22] 连玉喜, 黄耿, GODLEWSKA M, 等. 基于水声学探测的香溪河鱼类资源时空分布特征评估[J]. 水生生物学报, 2015, 39(5):920-929.[LIAN Y X, HUANG G, GODLEWSKA M, et al. Hydroacoustic assessment of spatio-temporal distribution and abundance of fish resources in the Xiangxi River[J]. Acta Hydrobiologica Sinica, 2015, 39(5):920-929.]
[23] 王珂, 段辛斌, 刘绍平, 等. 三峡库区大宁河鱼类的时空分布特征[J]. 水生生物学报, 2009, 33(3):516-521.[WANG K, DUAN X B, LIU S P, et al. Survey on temporal and spatial distribution of fish in the Daning River[J]. Acta Hydrobiologica Sinica, 2009, 33(3):516-521.]
[24] 任玉芹, 陈大庆, 刘绍平, 等. 三峡库区澎溪河鱼类时空分布特征的水声学研究[J]. 生态学报, 2012, 32(6):1734-1744.[REN Y Q, CHEN D Q, LIU S P, et al. Spatio-temporal distribution of fish in the Pengxi River arm of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2012, 32(6):1734-1744.]
[25] MELNIK N G, TIMOSHKIN O A, SIDELEVA V G, et al. Hydroacoustic measurement of the density of the Baikal macrozooplankter Macrohectopus branickii[J]. Limnology and Oceanography, 1993, 38(2):425-434.
[26] TREVORROW M V, TANAKA Y. Acoustic and in situ measurements of freshwater amphipods (Jesogammarus annandalei) in Lake Biwa, Japan[J]. Limnology and Oceanography, 1997, 42(1):121-132.
[1] 杨志, 龚云, 董纯, 唐会元, 乔晔. 黑水河下游鱼类资源现状及其保护措施[J]. 长江流域资源与环境, 2017, 26(06): 847-855.
[2] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[3] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[4] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[5] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[6] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[7] 是怡芸, 赵月, 查燕, 张银龙. 南京市植物叶面颗粒物的黑碳含量及时空分布特征[J]. 长江流域资源与环境, 2016, 25(12): 1886-1893.
[8] 张雅杰, 马明, 许刚. 长江中游城市群经济与生态成本空间演化模式分析[J]. 长江流域资源与环境, 2016, 25(11): 1679-1686.
[9] 周晓艳, 华敏, 秦雅雯, 马秀馨. 长江中游城市群空间联系研究[J]. 长江流域资源与环境, 2016, 25(10): 1492-1500.
[10] 张俊勇, 赵德招. 长江口南港北槽河床底质时空分布特征分析[J]. 长江流域资源与环境, 2016, 25(10): 1520-1527.
[11] 马勇, 童昀. 水利旅游资源空间结构特征及自驾车可达性研究——以长江中游城市群国家水利风景区为例[J]. 长江流域资源与环境, 2016, 25(08): 1167-1175.
[12] 杨丽婷, 刘大均, 赵越, 胡静, 张祥. 长江中游城市群森林公园空间分布格局及可达性评价[J]. 长江流域资源与环境, 2016, 25(08): 1228-1237.
[13] 贾铁飞, 王峰, 张猛. 长江中游尺八湖现代沉积物营养元素富集的环境意义[J]. 长江流域资源与环境, 2016, 25(08): 1256-1263.
[14] 朱挺兵, 李飞, 杨德国. 金沙江上游赠曲的鱼类与裸腹叶须鱼的食性[J]. 长江流域资源与环境, 2016, 25(07): 1086-1092.
[15] 王圣云, 翟晨阳, 顾筱和. 长江中游城市群空间联系网络结构及其动态演化[J]. 长江流域资源与环境, 2016, 25(03): 353-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[2] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[3] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 李友辉,董增川,孔琼菊. 廖坊水利工程对抚河流域生态承载力的影响分析[J]. 长江流域资源与环境, 2008, 17(1): 148 .
[9] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[10] 刘丛强 汪福顺 王雨春 王宝利. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384 .