长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 755-764.doi: 10.11870/cjlyzyyhj201705013

• 生态环境 • 上一篇    下一篇

基于HEC-RAS模型的汉江上游旬阳西段超长尺度古水文演化重建

张玉柱1,2, 黄春长3, 庞奖励3, 查小春3, 周亚利3, 石彬楠3, 李晓刚4   

  1. 1. 西北大学城市与环境学院, 陕西 西安 710127;
    2. 西北大学地质系, 陕西 西安 710069;
    3. 陕西师范大学旅游与环境学院, 陕西 西安 710119;
    4. 商洛学院地理系, 陕西 商洛 726000
  • 收稿日期:2016-10-11 修回日期:2016-12-28 出版日期:2017-05-20
  • 通讯作者: 黄春长 E-mail:cchuang@snnu.edu.cn
  • 作者简介:张玉柱(1987~),男,博士,讲师,主要从事环境变迁与人地关系演变研究.E-mail:xbdzyz05@nwu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41471071);中国博士后基金项目(2016M59289);陕西省重点科技创新团队计划(2014KCT-27)

RECONSTRUCTION OF LONG-TERM PALEO-HYDROLOGICAL EVOLUTION IN THE WEST XUNYANG REACH ON THE UPPER HANJIANG RIVER BASED ON HEC-RAS MODEL

ZHANG Yu-zhu1,2, HUANG Chun-chang3, PANG Jiang-li3, ZHA Xiao-chun3, ZHOU Ya-li3, SHI Bin-nan3, LI Xiao-gang4   

  1. 1. College of Urban and Environmental Science, Northwest University, Xi'an 710127, China;
    2. Department of Geology, Northwest University, Xi'an 710069, China;
    3. College of Tourism and Environmental Sciences, Shaanxi Normal University, Xi'an 710119, China;
    4. Department of Geography, Shangluo University, Shangluo 726000, China
  • Received:2016-10-11 Revised:2016-12-28 Online:2017-05-20
  • Supported by:
    National Nature Science Foundation of China, (41471071);China's Post-doctoral Science Fund, (2016M592829);Program for Key Science and Technology Innovation Team in Shaanxi Province, (2014KCT-27)

摘要: 通过对汉江上游河谷开展广泛细致的野外考察,在汉江上游旬阳西段全新世黄土-土壤剖面发现四层典型的古洪水滞流沉积物。对于系统采集的样品,进行粒度成分、磁化率分析,从沉积学角度证明了它们是典型的古洪水滞流沉积物。这些古洪水滞流沉积层夹在全新世风成黄土-土壤地层序列中,其每一层古洪水滞流沉积物记录了一期古洪水事件。根据OSL测年数据,并结合考古年代学和典型剖面地层对比,确定了这四期古洪水事件分别发生在8 500~8 400 a B.P.、4 200~4 000 a B.P.、3 200~2 800 a B.P.和1 800~1 700 a B.P.。利用古洪水SWD尖灭点高程法,恢复了这四期古洪水洪峰水位,介于233.0~239.2 m之间;进而基于HEC-RAS模型重建了四期古洪水洪峰流量,介于26 500~46 800 m3/s之间。将古洪水研究成果加入后,得到了远超过实测洪水和历史洪水重现期的稀遇洪水的水文信息,延长了汉江上游安康-旬阳段流域洪水的数据序列至万年尺度,使洪峰流量-频率曲线的稀遇洪水部分有了点据控制,百年和千年一遇的洪水洪峰流量的计算由外延变为内插,提高了设计洪水的精度。并且通过古洪水水文计算得到,该河段万年一遇洪水洪峰流量为46 900 m3/s,千年一遇洪水洪峰流量为37 800 m3/s,百年一遇洪水洪峰流量为28 900 m3/s。这对于汉江上游水利工程、防洪工程和城镇建设的洪水设计提供了十分重要基础数据。

关键词: 汉江, 全新世, 古洪水, 滞流沉积物, HEC-RAS模型

Abstract: Palaeoflood hydrological studies were carried out in the upper reaches of the Hanjiang River valley. Four bedsets of palaeoflood slackwater deposit (SWD) was found in the eolian loess-soil profile at the LJT site at the riverbank near the Luojiatan Village in the Xunyang County. After detailed field observations, a series of sedimentary samples were taken from the profile. Grain-size distribution and magnetic susceptibility were analyzed in the laboratory. The results showed that these SWD consist of sandy silt, originated from the suspended sediment load of the palaeo-floodwater. Each bedset of the SWD represented one group of palaeoflood event. According to the OSL dating in combination with the archaeological dating and pedo-stratigraphic correlations, these palaeoflood events occurred during 8 500-8 400 a B.P. (SWD1), 4 200-4 000 a B.P. (SWD2), 3 200-2 800 a B.P. (SWD3), and 1 800-1 700 a B.P. (SWD4), respectively. The palaeoflood peak discharges were calculated by using hydrological models. They were estimated to be between 26 500 and 46 800 m3/s. Improvement of the frequency curve estimation was made by the use of gauged flood data from 1935 to 2010; historical floods of 1583, 1867, and 1921 at the Ankang hydrological station; and Holocene palaeoflood discharges. These results have the archives of flood data extended to a time-scale of 10 000 years in the Ankang-Xunyang reach in the upper reaches of the Hanjiang River. Thus, the data generated from palaeoflood hydrology allowed us to refine the flood frequency-peak discharge curves and potentially increase its accuracy. From the frequency plot, we conclude that the flood discharge was 46 900 m3/s, with a return period of ten thousand years; 37 800 m3/s with a return period of one thousand years; and 28 900 m3/s with a return period of one hundred years, respectively. These results are of great significance for mitigating flood disasters and hydraulic engineering. These results are also very important for water conservancy construction and flood hazard mitigation.

Key words: Hanjiang River, Holocene, palaeoflood, slackwater deposit, HEC-RAS model

中图分类号: 

  • P539.6
[1] BAKER V R.Palaeoflood hydrology in a global context[J].CATENA,2006,66(1/2):161-168.
[2] KNOX J C.Sensitivity of modern and Holocene floods to climate change[J].Quaternary Science Reviews,2000,19(1/5):439-457.
[3] BENITO G,THORNDYCRAFT V R,RICO M,et al.Palaeoflood and floodplain records from Spain:evidence for long-term climate variability and environmental changes[J].Geomorphology,2008,101(1/2):68-77.
[4] ALLEN C D,MACALADY A K,CHENCHOUNI H,et al.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J].Forest Ecology and Management,2010,259(4):660-684.
[5] VERSTRAETE M M,BRINK A B,SCHOLES R J,et al.Climate change and desertification:where do we stand,where should we go?[J].Global and Planetary Change,2008,64(3/4):105-110.
[6] BAKER V R.Paleoflood hydrology:origin,progress,prospects[J].Geomorphology,2008,101(1/2):1-13.
[7] ENGLAND Jr J F,GODAIRE J E,KLINGERB R E,et al.Paleohydrologic bounds and extreme flood frequency of the Upper Arkansas River,Colorado,USA[J].Geomorphology,2010,124(1/2):1-16.
[8] GREENBAUM N,SCHWARTZ U,BENITO G,et al.Paleohydrology of extraordinary floods along the Swakop River at the margin of the Namib Desert and their paleoclimate implications[J].Quaternary Science Reviews,2014,103:153-169.
[9] HUANG C C,PANG J L,ZHA X C,et al.Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,374:274-283.
[10] 蔡新玲,孙娴,乔秋文,等.气候变化对汉江上游径流的影响[J].气候变化研究进展,2008,4(4):220-224.[CAI X L,SUN X,QIAO Q W,et al.Effects of climate change on runoff volume in the upper reaches of the Hanjiang River[J].Advances in Climate Change Research,2008,4(4):220-224.]
[11] 苏雪锐,高喜永,郭亚军.汉江上游径流时空演变规律分析[J].水利科技与经济,2010,16(10):1148-1151.[SU X R,GAO X Y,GUO Y J.Analysis on variation characteristics on the runoff series of the upper Hanjiang river[J].Water Conservancy Science and Technology and Economy,2010,16(10):1148-1151.]
[12] 张楷.汉江上游暴雨洪水特性研究[J].灾害学,2006,21(3):98-102.[ZHANG K.Analyses of rainstorm and flood characteristics in the upper reaches of Hanjiang River[J].Journal of Catastrophology,2006,21(3):98-102.]
[13] 殷淑燕,王海燕,王德丽,等.陕南汉江上游历史洪水灾害与气候变化[J].干旱区研究,2010,27(4):522-528.[YIN S Y,WANG H Y,WANG D L,et al.Study on historical flood disasters and climate change in the upper Reaches of the Hanjiang River[J].Arid Zone Research,2010,27(4):522-528.]
[14] 卫金容.汉江上游梯级开发对水文站网的影响及对策[J].陕西水利,2010(1):105-106.[WEI J R.Effects and countermeasures of cascade development on hydrologic network in the upper reaches of Hanjiang River[J].Shaanxi Water Resources,2010(1):105-106.]
[15] MURRAY A S,WINTLE A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements,2000,32(1):57-73.
[16] GRÜN R.Age.exe,computer program for the calculation of luminescence dates[M].Unpublished Computer Program.RSES,Canberra,2003.
[17] HUANG C C,PANG J L,ZHA X C,et al.Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River,middle reaches of the Yellow River,China[J].Quaternary Science Reviews,2011,30(3/4):460-468.
[18] AN Z S,KUKLA G J,PORTER S C,et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J].Quaternary Research,1991,36(1):29-36.
[19] 刘东生.黄土与环境[M].北京:科学出版社,1985:62-81.[LIU D S.Loess and environment[M].Beijing:Science Press,1985:62-81.]
[20] HUANG C C,PANG J L,SU H X,et al.The Ustic Isohumisol (Chernozem) distributed over the Chinese Loess Plateau:modern soil or palaeosol?[J].Geoderma,2009,150(3/4):344-358.
[21] HUANG C C,JIA Y F,PANG J L,et al.Holocene colluviation and its implications for tracing human-induced soil erosion and redeposition on the piedmont loess lands of the Qinling Mountains,northern China[J].Geoderma,2006,136(3/4):838-851.
[22] 邵晓华,汪永进,程海,等.全新世季风气候演化与干旱事件的湖北神农架石笋记录[J].科学通报,2006,51(1):80-86.[SHAO X H,WANG Y J,CHENG H,et al.Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ10O record from Shennongjia in Central China[J].Chinese Science Bulletin,2006,51(2):221-228.]
[23] 谭亮成,蔡演军,安芷生,等.石笋氧同位素和微量元素记录的陕南地区4200~2000a B.P.高分辨率季风降雨变化[J].第四纪研究,2014,34(6):1238-1245.[TAN L C,CAI Y J,AN Z S,et al.High-resolution monsoon precipitation variations in southern Shaanxi,central China during 4200~2000a B.P.as revealed by speleothem δ18O and Sr/Ca records[J].Quaternary Sciences,2014,34(6):1238-1245.]
[24] YANG D Y,YU G,XIE Y B,et al.Sedimentary records of large Holocene floods from the middle reaches of the Yellow River,China[J].Geomorphology,2000,33(1/2):73-88.
[25] 沈玉昌.汉水河谷的地貌及其发育史[J].地理学报,1956,22(4):295-322.[SHEN Y C.Geomorphology of the Hanshui valley[J].Acta Geographica Sinica,1956,22(4):295-322.]
[26] US Army Corps of Engineers HEC.HEC-RAS river analysis system hydraulic reference manual[M].California,USA,2010.
[27] SHEFFER N A,RICO M,ENZEL Y,et al.The Palaeoflood record of the Gardon River,France:a comparison with the extreme 2002 flood event[J].Geomorphology,2008,98(1/2):71-83.
[28] JACOBY Y,GRODEK T,ENZEL Y,et al.Late Holocene upper bounds of flood magnitudes and twentieth century large floods in the ungauged,hyperarid alluvial Nahal Arava,Israel[J].Geomorphology,2008,95(3/4):274-294.
[29] 武汉水利电力学院水力学教研室.水力学[M].北京:高等教育出版社,1986:335-336.[Wuhan Institute of Hydraulic and Electric Engineering,Hydraulics Teaching and Research Section.Hydraulics[M].Beijing:Higher Education Press,1986:335-336.]
[30] CHOW V T.Open-channel hydraulics[M].McGraw-Hill Book Company,Inc.,1959.
[1] 张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇. 湖北郧西县庹家湾剖面粒度组成特征及其环境意义[J]. 长江流域资源与环境, 2016, 25(12): 1910-1916.
[2] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[3] 李丹, 郭生练, 洪兴骏, 郭靖. 汉江流域1960~2014年降雨极值时空变化特征[J]. 长江流域资源与环境, 2016, 25(09): 1448-1456.
[4] 崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐. 汉江上游风成谷地黄土的重矿物组成特征及意义[J]. 长江流域资源与环境, 2016, 25(06): 943-951.
[5] 史超, 夏军, 佘敦先, 万蕙, 黄金凤. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016, 25(04): 580-589.
[6] 李小燕, 王志杰. 汉江源土壤流失状况及生态效益测评[J]. 长江流域资源与环境, 2016, 25(04): 671-678.
[7] 吴帅虎, 庞奖励, 程和琴, 黄春长, 查小春, 杨建超. 汉江辽瓦店全新世黄土-古土壤序列风化过程及古洪水事件记录[J]. 长江流域资源与环境, 2015, 24(05): 846-852.
[8] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-.
[9] 李思悦 刘文治 顾胜 韩鸿印 张全发. null[J]. 长江流域资源与环境, 2009, 18(3): 275-280.
[10] 史方方, 黄, 薇. 丹江口水库对汉江中下游影响的生态学分析[J]. 长江流域资源与环境, 2009, 18(10): 954-.
[11] 陆国宾, 刘轶, 邹响林, 邹振华, 蔡涛. 丹江口水库对汉江中下游径流特性的影响[J]. 长江流域资源与环境, 2009, 18(10): 959-.
[12] 窦 明,谢 平,姚堡垒,李桂秋. 中线调水对汉江下游枯水期的水安全影响研究[J]. 长江流域资源与环境, 2008, 17(5): 699-699.
[13] 胡安焱,郭生练. 汉江下游水污染协同控制探讨[J]. 长江流域资源与环境, 2007, 16(2): 213-213.
[14] 史威,朱诚,王富葆,田晓四,. 渝东峡江区全新世环境考古与环境变迁研究现状[J]. 长江流域资源与环境, 2007, 16(2): 222-222.
[15] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[2] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[3] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[4] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[5] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[6] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .
[7] 吴建楠, 姚士谋, 曹有挥, 王成新. 长江三角洲城市群城乡统筹发展的空间差别化研究[J]. 长江流域资源与环境, 2010, 19(z1): 21 .
[8] 师长兴. 长江上游输沙模数分布图的制作及其空间分异特征初步分析[J]. 长江流域资源与环境, 2010, 19(11): 1322 .
[9] 伍学进, 曾菊新. 试论宜居性城市绿地的规划与建设[J]. 长江流域资源与环境, 2011, 20(1): 28 .
[10] 施晓晖|徐祥德. 三峡库区来水流量与长江流域上游前期降水的关系研究[J]. 长江流域资源与环境, 2011, 20(09): 1062 .