长江流域资源与环境 >> 2017, Vol. 26 >> Issue (8): 1150-.doi: 10.11870/cjlyzyyhj201708005

• 农业发展 • 上一篇    下一篇

基于辅助变量和神经网络模型的土壤有机质空间分布模拟

江叶枫,郭  熙,叶英聪,孙  凯,饶  磊,宋青励   

  1. (1.江西农业大学江西省鄱阳湖流域农业资源与生态重点实验室/国土资源与环境学院, 江西 南昌 330045;2.南方粮油作物协同创新中心,湖南 长沙 410000; 3. 东华理工大学马克思主义学院, 江西 南昌 330013)
  • 出版日期:2017-08-20

SIMULATION OF DISTRIBUTION OF SOIL ORGANIC MATTER BASED ON AUXILIARY VARIABLES AND NEURAL NETWORK MODEL

JIANG Ye-feng,GUO Xi, YE Ying-cong,SUN Kai,RAO Lei, SONG Qing-li   

  1. (1.Jiangxi Agricultural University, Key laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province/Academy of Land Resource and Environment, Nanchang 330045, China ;2. Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410000, China ;3. College of Marxism of East China University of Technology, Nanchang 330013, China)
  • Online:2017-08-20

摘要: 为快速准确获取省域尺度下土壤有机质的空间分布状况。以江西省2012年测土配方施肥项目采集的 16 582 个耕地表层(0~20 cm)土壤样点数据,借助四方位搜索法、地统计学和遥感影像分析技术提取环境因子和邻近信息作为辅助变量,构建基于地理坐标与辅助变量的BP神经网络模型和普通克里金法结合的方法(BPNN_OK)、基于地理坐标与辅助变量的RBF神经网络模型和普通克里金法结合的方法(RBFNN_OK)和普通克里金法(OK法)3种方法,模拟省域尺度下耕地表层(0~20 cm)土壤有机质的空间分布。对 2 416 个验证样点进行独立验证的研究结果显示:基于辅助变量的神经网络模型较普通克里金法有较大提升。BPNN_OK法对土壤有机质预测结果的均方根误差、平均绝对误差、平均相对误差较OK法分别降低了2.76 g/kg、2.34 g/kg、9.83%,RBFNN_OK法较OK法分别降低了2.70 g/kg、2.29 g/kg、9.61%。研究显示,基于辅助变量的神经网络模型与OK法结合的方法明显地提高了土壤有机质空间分布模拟精度,并且存在改进和提高的空间。关键词: 土壤有机质;辅助变量;神经网络模型;空间分布模拟

Abstract: Accurate spatial information about soil organic matter (SOM) is critical for farmland use and soil environmental protection. In order to find the best interpolation method of SOM at the provincial scale, here we proposed there methods, back propagation neural network combined with ordinary kriging (BPNN_OK, based on geographic coordinates, environmental factors and neighbor information as auxiliary variables), radial basis function neural network with ordinary kriging (RBFNN_OK, based on geographic coordinates, environmental factors and neighbor information as auxiliary variables) and ordinary kriging (OK), to predict the distribution of SOM. Environmental factors were extracted by digital terrain and remote sensing image analysis technique. The four-direction search method was applied to get the neighbor information. To establish and validate this method, 16 109 soil samples were collected during the project of soil-test-based formulated fertilization in Jiangxi Province in 2012 and randomly divided into two groups, as modeling points (13 693) and validation points (2 416). The results show that three methods produced the similar SOM maps. The error analyses indicated:Based on auxiliary variables and neural network model has greatly improved than OK method. Compare to OK, the root mean square errors (RMSE), mean absolute errors (MAE) and mean relative errors (MRE) of BPNN_OK were reduced 2.76 g/kg,2.34 g/kg,9.83%, RBFNN_OK were reduced 2.70 g/kg,2.29 g/kg,9.61%. This result suggested that it is helpful for improving the prediction accuracy to employ artificial neural network model in spatial prediction of SOM, and this model provides guidance how to select the model to predict soil nutrient at provincial scale, but could be improved in the future. Key words:soil organic matter; auxiliary variables; neural network model; simulation of spatial distribution

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[4] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[5] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .
[6] 崔 鸿, 汪 亮,. 略论我国长江渔业资源的法律保护[J]. 长江流域资源与环境, 2006, 15(1): 58 -60 .
[7] 徐慧娟,黎育红,孙燕. 长江宜昌水文站流量、含沙量和悬移质粒度关系[J]. 长江流域资源与环境, 2006, 15(Sup1): 110 -115 .
[8] 张信宝,曹植菁, 艾南山. 溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究[J]. 长江流域资源与环境, 2009, 18(2): 170 .
[9] 邓志强,任淑花. 长株潭地区经济增长与工业污染变迁的实证研究[J]. 长江流域资源与环境, 2008, 17(4): 517 .
[10] 胡海胜,郑艳萍. 庐山研究的文献分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 66 -71 .