摘要:
为了解863消浪工程对太湖底泥再悬浮及营养盐释放的抑制作用,于2005年7月15~17日在工程区投放悬浮物捕获器测定沉积物的再悬浮通量,并分层采集水样进行水体营养盐浓度的垂向分布研究。16日平均风速3 m/s时,测得的再悬浮通量上层最大值为7.22 g/d·m2,下层最大值为41.8 g/d·m2;17日平均风速5 m/s时,测得的再悬浮通量上层最小值24.7 g/d·m2,下层最小值为48.4 g/d·m2,沉积物再悬浮通量与风浪扰动强度关系密切。对比消浪工程区内外沉积物的再悬浮通量表明,消浪工程能够显著减弱风浪对底泥的扰动,抑制沉积物再悬浮,减轻营养盐的内源释放通量。实验结果还表明,太湖水体悬浮物浓度越高,悬浮物的有机质含量就越低,相应地,单位悬浮物中磷的含量也越低。随着风浪扰动的持续和增强,尽管能够将更多的沉积物间隙水中的溶解性磷带入水体,但是,野外观测中发现水体溶解性的磷含量并未相应增高甚至降低,这可能是由于水体中悬浮物浓度越高,对水体溶解性磷的吸附能力也越高,从而使得水中溶解性磷的含量增高不显著甚至降低。
[1] | 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618. |
[2] | 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914. |
[3] | 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614. |
[4] | 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453. |
[5] | 陈江龙, 田柳, 赵酉辰. 基于ILBM的太湖饮用水源地管理研究——以苏州市为例[J]. 长江流域资源与环境, 2016, 25(12): 1815-1823. |
[6] | 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909. |
[7] | 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584. |
[8] | 臧玉珠, 林晨, 金志丰, 方飞, 周生路. 土地利用变化下沿海地区吸附态磷负荷动态变化研究[J]. 长江流域资源与环境, 2016, 25(07): 1093-1102. |
[9] | 黄锐, 赵佳玉, 肖薇, 刘寿东, 李汉超, 徐敬争, 胡诚, 肖启涛. 太湖辐射和能量收支的时间变化特征[J]. 长江流域资源与环境, 2016, 25(05): 733-742. |
[10] | 李国莲, 谢发之, 张瑾, 陈广洲, 汪静柔. 巢湖水及沉积物中总磷的分布变化特征[J]. 长江流域资源与环境, 2016, 25(05): 830-836. |
[11] | 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452. |
[12] | 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155. |
[13] | 龚志军, 李艳, 张敏, 蔡永久, 薛庆举, 许浩. 大型浅水湖泊太湖霍甫水丝蚓次级生产力的研究[J]. 长江流域资源与环境, 2015, 24(12): 2054-2060. |
[14] | 匡武, 芮明, 张彦辉, 严云志, 吴添天. 巢湖湖滨带生态恢复工程对暴雨径流氮磷削减效果研究[J]. 长江流域资源与环境, 2015, 24(11): 1906-1912. |
[15] | 赖晓明, 廖凯华, 朱青, 吕立刚, 徐飞. 基于Hydrus-1D模型的太湖流域农田系统水分渗漏和氮磷淋失特征分析[J]. 长江流域资源与环境, 2015, 24(09): 1491-1498. |
|