长江流域资源与环境 >> 2008, Vol. 17 >> Issue (4): 598-598.

• 生态环境 • 上一篇    下一篇

长江河口上边界床沙粒径的长期变化及其原因

陈西庆1| 吕溪溪2| 严以新1| 童朝锋1| 窦希萍4| 李键庸3| 田 磊   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-07-20

LONGTERM CHANGES AND CAUSES OF THE GRAIN SIZE OF BOTTOM SEDIMENTS AT LANDWARD LIMIT OF THE YANGTZE ESTUARY

CHEN Xiqing1, LV Xixi2, YAN Yixin1, TONG Chaofeng1, SONG Zhiyao1| DOU Xiping4, LI Jianyong3| TIAN Lei1   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-07-20

摘要:

大通水文站和泥沙观测断面位于长江河口的上边界。长江下游从大通(潮区界)至长江口门的距离长达680 km。20世纪80年代以来,长江流域日趋强烈的人类活动,显著改变了长江入海水文和泥沙数量和特性,从而对长江下游至河口动力地貌和动力沉积产生了显著影响。主要研究长江潮区界大通断面20世纪50年代以来床沙粒径的长期变化。1977~2004年床沙粒径 (〖WTBX〗d〖WTBZ〗50) 有一稳定增大的趋势,这主要是对上游河道悬沙来量持续减少的响应。值得注意的是床沙粗化过程是发生在该河床长期加积的背景上的。研究表明:导致床沙粒径粗化的原因,主要是上游河段进入本河段床沙粒径的增加和本河段冲淤过程中悬沙与床沙颗粒的交换。随着三峡水库的正常运行和其它大型水库的建设,预计未来几十年长江上游悬沙来量将进一步大幅度下降,可以预计,长江潮区界河段的床沙粒径将继续呈现增大的趋势。〖

 

关键词: 床沙, 悬沙, 粒径, 三峡工程, 长江

Abstract:

Datong Hydrometric Station and Sediment Monitoring Profile are located in the landward limit of the Yangtze Estuary. The river channel from Datong (tidal limit) to the river mouth is as long as 680 km. The increasingly intensified human activities since the 1980s have significantly changed the sediment and water discharges from the Yangtze River into the estuary, therefore greatly influenced the sediment dynamics and morphodynamics from the lower Yangtze River to the Yangtze Estuary. This paper mainly examined the longterm variations in the grain size of bottom sediments since the 1950s at Datong, the landward limit of the Yangtze Estuary. There is an increasing trend in grain size (〖WTBX〗d〖WTBZ〗50) of bottom sediments from 1977 to 2004 mainly in response to a sustained decrease in suspended sediments from upstream. It is noticed that the riverbed coarsening process has been occurring under the background of local riverbed aggradations. The increasing trend in grain size was mainly caused by an increase of grain size of bottom sediments from the adjacent upstream reaches and by the local sediment exchange between suspended sediments and bottom sediments during the erosion and deposition process. It is expected that the grain size of bottom sediment at the landward limit of the Yangtze Estuary will increase further in the coming decades due to a more dramatic reduction of suspended sediment after the Three Gorges Project and other upstream largescale reservoirs.〖

 

Key words: bottom sediment, suspended sediment, grain size, Three Gorges Dam, the Yangtze River〖  

[1] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11.
[2] 刘云强, 权 泉, 朱佳玲, 王 芳. 绿色技术创新、产业集聚与生态效率——以长江经济带城市群为例[J]. 长江流域资源与环境, 2018, 27(11): 2395-2406.
[3] 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797-805.
[4] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[5] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[6] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[7] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705.
[8] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[9] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[10] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[11] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[12] 成定平, 淦苏美. 长江经济带高技术产业投入产出效率分析[J]. 长江流域资源与环境, 2017, 26(03): 325-332.
[13] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[14] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[15] 叶潇潇, 赵一飞. 基于聚类分析的长江三角洲港口群可持续发展水平评价[J]. 长江流域资源与环境, 2016, 25(Z1): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[8] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[9] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .