长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1387-1394.doi: 10.11870/cjlyzyyhj201508018

• 生态环境 • 上一篇    下一篇

以植被生物完整性评价梁子湖湖滨湿地生态系统健康

谢楚芳, 舒潼, 刘毅, 任文彬, 蒋金辉, 杨劭   

  1. 华中师范大学生命科学学院, 湖北 武汉 430079
  • 收稿日期:2014-10-08 修回日期:2015-02-12 出版日期:2015-08-20
  • 作者简介:谢楚芳(1989~),女,硕士研究生,主要研究方向为湿地生态恢复.E-mail:xchufang@126.com
  • 基金资助:
    国家试点湖泊生态环境保护项目梁子湖专题,"十二五"国家重大专项(2013ZX07104-004-03)

HEALTH ASSESSMENT OF RIPARIAN WETLAND ECOSYSTEM OF LAKE LIANGZIHU BY VEGETATION INDEX OF BIOLOGICAL INTEGRITY

XIE Chu-fang, SHU Tong, LIU Yi, REN Wen-bin, JIANG Jin-hui, YANG Shao   

  1. College of life science, Central China Normal University, Wuhan 430079, China
  • Received:2014-10-08 Revised:2015-02-12 Online:2015-08-20
  • Contact: 杨 劭 E-mail:mryangshao@126.com E-mail:mryangshao@126.com

摘要: 湖滨湿地植被是湖滨带生态系统的主要特征,以湖滨湿地植被为对象可评价湖滨带生态系统健康状况。通过对梁子湖湖滨湿地植被的详细调查,共鉴定出植物182种,隶属于52科128属,其中湿生植物147种,水生植物35种。水生植物中有20种挺水植物,6种浮叶植物和9种沉水植物。采用植被生物完整性(VIBI)方法评价梁子湖湖滨湿地生态系统健康,对21个备选指标进行筛选分析,建立了以挺水植物物种数、多年生植物物种数、外来物种百分比、香农多样性指数、植物区系质量指数FQAI、耐受性物种百分比、敏感性物种百分比为核心指标的评价体系,三分法对指标进行赋值,将梁子湖湖滨湿地划分为健康、良好、一般和较差4个等级。评价结果表明,梁子湖湖滨湿地22个调查位点中,处于健康状态的有3个位点,良好6个,共占总位点数的41%,一般和较差分别为7个和6个,共占59%。总体上看,东梁子湖和牛山湖湖滨湿地位点健康状况较好,而西梁子湖湖滨湿地差异性较大,山坡湖南部湖湾和前江大湖北部位点健康状况良好,张桥湖湖滨湿地健康状况一般,评价较差的6个位点集中在宁港湖周围和前江大湖南部沿岸。底质和人类活动如水位调控、围网养殖、放牧等是影响梁子湖湖滨湿地植被生物完整性的主要原因。

关键词: 植被生物完整性, 梁子湖, 健康评价, 湿地

Abstract: Biological integrity is the ability of an aquatic ecosystem to support and maintain a balanced, integrated, adaptive assemblage of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region. Vegetation with the advantages including ease of identification and immobility is the key feature of wetland ecosystem and can be used to assess the health status of the wetland ecosystem. Lake Liangzihu, as the Wetland Nature Reserve of Hubei Province, plays an important role in biodiversity protection by offering habitat for waterbirds, macrophytes and fish. To evaluate the health status of the riparian wetland of Lake Liangzihu, a vegetation index of biotic integrity (VIBI) was developed from data collected by vegetation survey. To establish the VIBI calculation, 21 candidate vegetation metrics based on species richness and composition, vegetation abundance, ecological affinity, and species tolerance were tested for their ability to discriminate between impaired and least-impaired habitat conditions. Seven discriminatory metrics, Number of emergent species, Number of perennial species, Percent exotic species, Shannon-weaver diversity index, Floristic Quality Assessment Index(FQAI), Percent tolerant plant species and Percent intolerant plant species, were finally selected with a range test, box-and-whisker analysis and Pearson correlation analysis. We then assigned scores for each metric based on the statistical analysis by using three scoring method, andthe scoring criteria were based on the distribution of the metrics' values across all sites. The total VIBI score was obtained by summing the scores from the 7 metrics, resulting in a maximum score of 35. The criteria of health ranking were finally determined based on the 25% percentile of VIBI value in reference sites. Four quality classes (Good, Fair, Poor, and Very poor) of the health status were defined. The results of vegetation survey showed that there were 182 plant species belonging to 52 families and 128 genera in Lake Liangzihu, including 147 hygrophytes, 20 emergent macrophytes, 6 floating-leaved plants, 9 submerged macrophytes, respectively. The dominant plant species were Conyza Canadensis, Cynodon dactylon, Carex argyi, Echinochloa crusgalli, Juncus effuses, Zizania caduciflora, Typha orientalis and Trapa bispinosa. The dominant association were Trapa bispinosa Ass., Vallisneria natans-Trapa bispinosa-Nymphoides indica Ass., Phragmites australis-Zizania caduciflora Ass. and Vallisneria natans-Najas minor-Hydrilla verticillata Ass. The results indicated that in the 22 sampling sites we have investigated, only 3 and 6 were in good and fair, respectively, totally covering a percentage of 41%, while 59% of which were not satisfactory. In general, the health status of eastern Liangzi Lake, Niushan Lake, Shanpo Lake and northern part of Qianjiang Lake were good, Zhangqiao Lake were in poor, and the six worse sites were along the coast of Ninggang Lake and southern Qianjiang Lake. The main factors affecting the biological integrity of vegetation were sediments and human activities such as water level regulation, enclosure aquaculture and grazing.

Key words: vegetation IBI, Lake Liangzihu, health assessment, wetland

中图分类号: 

  • X171.1
[1] 徐 慧,崔广柏.湖泊湿地利用与保护临界的经济学准则探讨[J].资源科学.2006,28 (1):51-56.
[2] BRINSON M M.A Hydrogeomorphic Classification for Wetlands[R].Wetland Research Program Technical Report WRPD E-C-4,US Army Engineers Waterways Experiment Station.Vicksburg,MS,1993.
[3] STANDER E K,EHRENFELD J G,Rapid assessment of urban wetlands:Functional assessment model development and evaluation[J].Wetlands,2009,29(1):261-276.
[4] BECK M W,HATCH L K.A review of research on the development of lake indices of biotic integrity[J].Environmental Reviews,2009,17:21-44.
[5] MACK J J,MICACCHION M,LAUREN D.Augusta et al.Vegetation Indices of Biotic Integrity (VIBI) for wetlands and calibration of the Ohio Rapid Assessment Method for wetlands[R].Ohio Environmental Protection Agency,Division of Surface Water,Columbus,Ohio,2000.
[6] MACK J J. Vegetation Index of Biotic Integrity (VIBI) for Wetlands:ecoregional,hydrogeomorphic,and plant community comparisons with preliminary wetland aquatic life use designations[R].State of Ohio Environmental Protection Agency.Wetland Ecology Group Division of Surface Water,2001.
[7] MILLER S J,WARDROP D H,MAHANEY W M,et al.A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania[J].Ecological Indicators,2006,6:290-312.
[8] SIMON T P,STEWART P M,ROTHROCK P E.Development of multimetric indices of biotic integrity for riverine and palustrine wetland plant communities along Southern Lake Michigan[J].Aquatic Ecosystem Health and Management Society,2001,4:293-309.
[9] ROTHROCK P E,SIMON T P,STEWART P M.Development,calibration,and validation of a littoral zone plant index of biotic integrity (PIBI) for lacustrine wetlands[J].Ecological Indicators,2008,8:79-81.
[10] HARGISS C L M,DEKEYSER E S,KIRBY D R,et al.Regional assessment of wetland plant communities using the index of plant community integrity[J].Ecological Indicators,2008,8:303-307.
[11] VONDRACEK B,KOCH J D,BECK M W.A comparison of survey methods to evaluate macrophyte index of biotic integrity performance in Minnesota lakes[J].Ecological Indicators,2014,36:178-185.
[12] BECK M W,VONDRACEK B,HATCH L K.Environmental clustering of lakes to evaluate performance of a macrophyte index of biotic integrity[J].Aquatic Botany,2013,108:16-25.
[13] HERMAN B D,MADSEN J D,ERVIN G N.Development of Coefficients of Conservatism for Wetland Vascular Flora of North and Central Mississippi[R].Geo Resources Institute Report 4001(Water Resources).March 20,2006.
[14] 王祖熊.梁子湖湖沼学资料[J].水生生物学集刊,1959(3):352-368.
[15] 王卫民,杨千荣,樊启学,等.梁子湖水生植被[J].华中农业大学学报,1994,13(3):281-290.
[16] 葛继稳,蔡庆华,刘健康,等.梁子湖湿地植物多样性现状与评价[J].中国环境科学,2003,23(5):451-456.
[17] 胡小贞,许秋瑾,金相灿,等.湖泊底质与水生植物相互作用综述[J].生物学杂志,2011,28(2):73-76.
[18] 徐治国,何 岩,闫百兴,等.营养物及水位变化对湿地植物的影响[J].生态学杂志,2006,25(1):87-92.
[19] 刘 永,郭怀成,周 丰,等.湖泊水位变动对水生植被的影响机理及其调控方法[J].生态学报,2006,26(9):3117-3126.
[20] 蒋丽佳,胡小贞,许秋瑾,等.湖滨带生态退化现状、原因分析及对策[J].生物学杂志,2011,28(5):65-69.
[21] STAPANIAN M A,MACK J J,ADAMS J V,et al.Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity[J].Ecological Indicators,2013,24:120-126.
[22] 彭映辉,简永兴,倪乐意.湖北省梁子湖水生植物的多样性[J].中南林学院学报,2005,25(6):60-64.
[1] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[2] 李艳, 高艳娜, 戚志伟, 姜楠, 仲启铖, 姜姗, 王开运, 张超. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应[J]. 长江流域资源与环境, 2016, 25(11): 1738-1747.
[3] 冷龙龙, 张海萍, 张敏, 李天科, 刘晓波, 渠晓东. 大型底栖动物快速评价指数BMWP在太子河流域的应用[J]. 长江流域资源与环境, 2016, 25(11): 1781-1788.
[4] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[5] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[6] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
[7] 周天舒, 张亚, 唐文乔, 王丽卿. 基于鱼类完整性指数的黄浦江水生态系统评价[J]. 长江流域资源与环境, 2016, 25(06): 895-903.
[8] 邓志民, 张翔, 张华, 潘国艳, 秦学全. 鄱阳湖湿地土壤-植物-地下水稳定氧同位素组成分析[J]. 长江流域资源与环境, 2016, 25(06): 989-995.
[9] 李敏, 张灿明, 李姣, 邓学建. 基于淹水特征的分时段湿地生态系统管理——以南洞庭湖万子湖为例[J]. 长江流域资源与环境, 2016, 25(05): 769-776.
[10] 王生愿, 桂发二, 方纬. 负荷历时曲线法在梁子湖流域污染容量总量控制中的应用[J]. 长江流域资源与环境, 2016, 25(05): 845-850.
[11] 王娅娅, 杨艳芳, 李云飞, 刘文静, 张平究. 不同退耕年限下菜子湖湿地土壤活性铝形态特征[J]. 长江流域资源与环境, 2016, 25(02): 307-315.
[12] 李敏, 张灿明, 李姣, 邓学建. 南洞庭湖湿地鱼类生境景观变化及其人为驱动[J]. 长江流域资源与环境, 2015, 24(12): 2069-2075.
[13] 陈彬, 于秀波, 刘宇. 基于中低分辨率遥感影像的分类方法对比研究——以鄱阳湖水鸟栖息地遥感分类为例[J]. 长江流域资源与环境, 2015, 24(11): 1834-1842.
[14] 布乃顺, 王坤, 侯玉乐, 李钢, 齐淑娟, 方长明, 渠俊峰. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.
[15] 汪辉, 余超, 李明阳, 时宇, 杨玉锋. 基于CLUE-S模型的湿地公园情景规划——以南京长江新济洲国家湿地公园为例[J]. 长江流域资源与环境, 2015, 24(08): 1263-1269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[2] 张晓平,樊 杰. 长江上游生态脆弱区生态屏障建设与产业发展战略研究——以昭通市为例[J]. 长江流域资源与环境, 2006, 15(3): 310 -314 .
[3] 李书恒, 郭 伟, 施晓冬, 朱大奎. 舟山群岛海洋环境资源及其开发利用[J]. 长江流域资源与环境, 2007, 16(4): 425 .
[4] 叶 浩,濮励杰,张 健. 我国粮食主产区耕地产出效率研究[J]. 长江流域资源与环境, 2008, 17(4): 584 .
[5] 张智, 张显忠. 三峡库区泥沙对不同初始浓度硅藻生长影响[J]. 长江流域资源与环境, 2006, 15(Sup1): 116 -119 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[9] 余 斌,李星明,曾菊新. 武汉城市圈产业发展的空间优化[J]. 长江流域资源与环境, 2007, 16(5): 560 .
[10] 蔡述明, 殷鸿福, 杜 耘, 吴胜军, 李 涛. 南水北调中线工程与汉江中下游地区可持续发展[J]. 长江流域资源与环境, 2005, 14(4): 409 -413 .