长江流域资源与环境 >> 2016, Vol. 25 >> Issue (02): 307-315.doi: 10.11870/cjlyzyyhj201602017

• 生态环境 • 上一篇    下一篇

不同退耕年限下菜子湖湿地土壤活性铝形态特征

王娅娅1, 杨艳芳2, 李云飞1, 刘文静1, 张平究1   

  1. 1. 安徽师范大学国土资源与旅游学院/安徽自然灾害过程与防控研究省级重点实验室, 安徽 芜湖 241003;
    2. 安徽师范大学环境科学与工程学院, 安徽 芜湖 241003
  • 收稿日期:2015-05-07 修回日期:2015-10-08 出版日期:2016-02-20
  • 通讯作者: 杨艳芳,E-mail:yangyf1977@163.com E-mail:yangyf1977@163.com
  • 作者简介:王娅娅(1989~),女,硕士研究生,主要从事湿地土壤生态研究.E-mail:wya027@163.com
  • 基金资助:
    国家自然科学基金项目(41001369;41301249);安徽省自然科学基金项目(1308085MD22)

CHANGES OF ACTIVE ALUMINUM FORMS IN WETLANDS WITH VARIOUS RESTORATION AGES IN CAIZI LAKE, ANHUI PROVINCE

WANG Ya-ya1, YANG Yan-fang2, LI Yun-fei1, LIU Wen-jing1, ZHANG Ping-jiu1   

  1. 1. Anhui Key Laboratory of Natural Disasters Process and Prevention/College of Territorial Resource and Tourism, Anhui Normal University, Wuhu 241003, China;
    2. College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
  • Received:2015-05-07 Revised:2015-10-08 Online:2016-02-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No.41001369 and 41301249);the Natural Science Foundation of Anhui Province (1308085MD22)

摘要: 选取菜子湖区不同退耕年限(3、5、7、9、11和21 a)湿地、以仍耕油菜地和原始湿地土壤为研究对照,分析了土壤全铝和活性铝形态组分特征,探讨退耕还湖后湿地土壤铝元素组分特征变化及其生态效应。结果表明,研究区土壤全铝含量和活性铝含量分别在16.78~57.05 g/kg和1 699.94~3 823.49 mg/kg之间,其中活性铝总量占全铝含量的6.70%~11.84%。退耕还湖3~11a期间,土壤全铝、活性铝总量及5种形态活性铝总体均随退耕年限延长而增加;退耕11~21 a期间均下降。不同形态活性铝中,可溶性铝AlS含量最低,而酸溶无机铝Al(OH)30和腐殖酸铝Al-HA含量较高,分别占活性铝总量的42%~53% 和39%~50%,左右着活性铝总量的变化。分析讨论表明退耕后湿地植被和水文条件的改变导致土壤粘粒,有效磷和有机质的变化,进而影响退耕后土壤活性铝组分特征。其中0~5 cm土壤毒性较强的交换性铝Al3+和羟基铝Al(OH)2+、Al(OH)2+含量均在退耕3~9 a期间逐渐增加,占活性铝总量的比例也有所增加,该退耕期湿地土壤存在一定的铝毒生态风险。

关键词: 退耕还湖, 湿地土壤, 活性铝形态, 铝毒

Abstract: Soils were sampled in rape field, native wetland, and wetland returned from farmland to lake (RFL) within different periods (3, 5, 7, 9, 11 and 21a) and analyzed the distribution of active aluminum forms in the Caizi Lake, Anhui Province. The results showed that the contents of soil total aluminum (AlT) and active aluminum (AlA) were 16.78-57.05 g/kg and 1 699.94-3 823.49 mg/kg respectively, moreover AlA accounted for 6.70%-11.84% of soil AlT in studied fields. The contents of AlT, AlA and other five active aluminum forms increased with the increase of RFL age within the restoration period of 3-11a, and declined gradually after 11a of RFL. Among the active aluminum forms, solution aluminum (AlS) was the lowest. Acid-soluble inorganic aluminum [Al(OH)30] and humic-acid aluminum [Al-HA] were higher, which accounted for 42%-53% and 39%-50% of soil AlA respectively, which dominated the change of AlA. The results indicated that the variation of soil clay, organic matter and available phosphorus was due to the change of wetland vegetation and hydrological conditions, which resulted in the characteristics of soil active aluminum components after RFL. The results also indicated that the most toxic forms of aluminum, exchange aluminum (Al3+) and unimer hydroxyl aluminum [Al(OH)2+、Al(OH)2+] increased gradually within the restoration period of 3-9 a. Wetland soils sustained ecological risk of aluminum toxicity in the period of 3-9 a after RFL.

Key words: returning farmland to lake, wetland soil, forms of active aluminum, aluminum toxicity

中图分类号: 

  • S151.9
[1] 黄洐初, 曲长菱. 土壤中铝的溶出及形态研究[J]. 环境科学, 1996, 17(1):57-59.[HUANG Y C, QU C L. Study on the leaching and species of aluminum in soil[J]. Environmental Science, 1996, 17(1):57-59.]
[2] 孙晓, 庄舜尧, 桂仁意, 等. 连续浸提法测定集约经营下雷竹林土壤铝的形态及变化[J]. 土壤通报, 2013, 44(5):1118-1122.[SUN X, ZHUANG S Y, GUI R Y, et al. Al distribution in soils planted Lei Bamboo (Phyllostachy spraecox. Preveynalis) under intensive management with a continuous extraction method[J]. Chinese Journal of Soil Science, 2013, 44(5):1118-1122.]
[3] 王维君. 我国南方一些酸性土壤铝存在形态的初步研究[J]. 热带亚热带土壤科学, 1995, 4(1):1-8.[WANG W J. Study on aluminum forms in some acid soils in South China[J]. Tropical and Subtropical Soil Science, 1995, 4(1):1-8.]
[4] 沈仁芳. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京:科学出版社, 2008:, 75-79.
[5] 刘友兆, 丁瑞兴, 孙玉华, 等. 茶园土壤中铝的形态转化及其对生态环境的影响[J]. 水土保持研究, 1994, 1(5):71-74.[LIU Y Z, DING R X, SUN Y H, et al. Formation changes of alum in soil and its influence on ecological environment in tea plantation[J]. Research of Soil and Water Conservation, 1994,1(5):71-74.]
[6] 吕焕哲, 王凯荣, 谢小立. 土地利用方式与坡位土壤活性铝形态特征分析[J]. 水土保持学报, 2007, 21(1):172-175.[LV H Z, WANG K R, XIE X L. Character of soil aluminum forms under different land use and slope position[J]. Journal of Soil and Water Conservation, 2007, 21(1):172-175.]
[7] 李九玉, 徐仁扣. 不同pH下低分子量有机酸对黄壤中铝活化的影响[J]. 环境化学, 2005, 24(3):275-278.[LI J X, XU R K. Effect of low-molecular-weight organic acids on the mobilization of aluminum in yellow soil[J]. Environmental Chemistry, 2005, 24(3):275-278.]
[8] 赵天龙, 解光宁, 张晓霞, 等. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报, 2013, 24(10):3003-3011.[ZHAO T L, XIE G N, ZHANG X X, et al. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chinese Journal of Applied Ecology, 2013, 24(10):3003-3011.]
[9] 傅柳松, 吴杰民, 杨影, 等. 模拟酸雨对土壤活性铝释出影响研究[J]. 环境科学, 1993, 14(1):20-24.[FU L S, WU J M, YANG Y, et al. The effect of simutating acid rain on the release of active aluminum from soil[J]. Environmental Science, 1993, 14(1):20-24.]
[10] 田仁生, 刘厚田. 酸化性土壤中铝及其植物毒性[J]. 环境科学, 1990, 11(6):41-46.[TIAN R S, LIU H T. Aluminum in acidic soils and its phytotoxicity[J]. Environmental Science, 1990, 11(6):41-46.]
[11] 仝雅娜, 丁贵杰. 1, 2代马尾松林土壤不同形态铝含量[J]. 林业科学, 2012, 48(6):8-11.[TONG Y N, DING G J. Different forms aluminum contents in the soil of the 1st and 2nd generation Pinus massoniana plantations[J]. Scientia Silvae Sinicae, 2012, 48(6):8-11.]
[12] 刘国群, 庄舜尧, 李国栋, 等. 不同种植年限下雷竹林土壤中铝的形态变化[J]. 土壤, 2008, 40(6):1013-1016.[LIU G Q, ZHUANG S Y, LI G D, et al. Changes of aluminum form in Phyllostachy spraecox. Preveynalis soils with planting time[J]. Soils, 2008, 40(6):1013-1016.]
[13] 季海宝, 孙v晓, 桂仁意, 等. 集约经营对雷竹林土壤与植株铝含量的影响[J]. 林业科学, 2014, 50(1):15-20.[JI H B, SUN X, GUI R Y, et al. Influence of intensive management on soil extractable Al and Phyllostachys praecox Al content[J]. Scientia Silvae Sinicae, 2014, 50(1):15-20.]
[14] 苏有健, 廖万有, 王烨军, 等. 单宁酸对不同pH茶园土壤中活性铝形态分布的影响[J]. 中国生态农业学报, 2014, 22(1):22-30.[SU Y J, LIAO W Y, WANG Y J, et al. Effects of tannic acid on active aluminum forms distribution in tea garden soils with different pH[J]. Chinese Journal of Eco-Agriculture, 2014, 22(1):22-30.]
[15] 刘晓静, 郑宝山, 胡军, 等. 贵州茶园土壤中氟、铝形态及其关系的实验研究[J]. 地球与环境, 2014, 42(4):555-560.[LIU X J, ZHENG B S, HU J, et al. An experimental study on species and their relationships of F and Al from tea farm soils in Guizhou Province, China[J]. Earth and Environment, 2014, 42(4):555-560.]
[16] 苏有健, 廖万有, 王烨军, 等. 皖南茶园土壤活性铝形态分布与土壤pH和植茶年限的关系[J]. 农业环境科学学报, 2013, 32(4):721-728.[SU Y J, LIAO W Y, WANG Y J, et al. Influences of soil pH and cultivation years on active aluminum species distribution from tea soils in Southern Anhui, China[J]. Journal of Agro-Environment Science, 2013, 32(4):721-728.]
[17] 邵宗臣, 何群, 王维君. 红壤中铝的形态[J]. 土壤学报, 1998, 35(1):38-48.[SHAO Z C, HE Q, WANG W J. Forms of aluminum in red soils[J]. Acta Pedologica Sinica, 1998, 35(1):38-48.]
[18] 肖厚军, 王正银, 何桂芳, 等. 贵州黄壤铝形态及其影响因素研究[J]. 土壤通报, 2009, 40(5):1044-1048.[XIAO H J, WANG Z Y, HE G F, et al. Aluminum forms and their effect factors in yellow soils in Guizhou[J]. Chinese Journal of Soil Science, 2009, 40(5):1044-1048.]
[19] 吕宪国, 刘晓辉. 中国湿地研究进展——献给中国科学院东北地理与农业生态研究所建所50周年[J]. 地理科学, 2008, 28(3):301-308.[LV X G, LIU X H. Wetland research progresses in China——Dedicated to the 50th Anniversary of Northeast Institute of Geography and Agroecology, CAS[J]. Scientia Geographica Sinica, 2008, 28(3):301-308.]
[20] 孔令柱, 刘爽, 郑真, 等. 不同退耕年限下安庆沿江湿地土壤氮、磷变化研究[J]. 水土保持研究, 2014, 21(1):43-46.[KONG L Z, LIU S, ZHENG Z, et al. Changes of the soil nitrogen and phosphorus in different periods of abandoned farming wetlands along the Yangtze River in Anqing, Anhui Province[J]. Research of Soil and Water Conservation, 2014, 21(1):43-46.]
[21] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999:107-178.
[22] 邢承华, 朱美红, 张淑娜, 等. 磷对铝胁迫下荞麦根际土壤铝形态和酶活性的影响[J]. 生态环境学报, 2009, 18(5):1944-1948.[XING C H, ZHU M H, ZHANG S N, et al. Effects of phosphorus on aluminum forms and soil enzymatic activities of buckwheat rhizosphere under aluminum stress[J]. Ecology and Environmental Sciences, 2009, 18(5):1944-1948.]
[23] GODSEY C B, PIERZYNSKI G M, MENGEL D B, et al. Changes in soil pH, organic carbon, and extractable aluminum from crop rotation and tillage[J]. Soil Science Society of America Journal, 2006, 71(3):1038-1044.
[24] WANG P, BI S P, ZHOU Y P, et al. Study of aluminium distribution and speciation in atmospheric particles of different diameters in Nanjing, China[J]. Atmospheric Environment, 2007, 41(27):5788-5796.
[25] DRABEK O, BORUVKA L, MLADKOVA L, et al. Possible method of aluminium speciation in forest soils[J]. Journal of Inorganic Biochemistry, 2003, 97(1):8-15.
[26] 王水良, 王平, 王趁义. 降水酸度对马尾松根际环境中铝形态的影响[J]. 水土保持学报, 2010, 24(3):247-251.[WANG S L, WANG P, WANG C Y, et al. Influence of rain acidity on the aluminum speciation in rhizosphere of Masson Pine (Pinus massoniana Lamb)[J]. Journal of Soil and Water Conservation, 2010, 24(3):247-251.]
[27] 谢正苗, 黄昌勇. 土壤和水体中可溶性铝硅酸盐的形成及其环境意义[J]. 环境科学进展, 1997, 5(1):57-60.[XIE Z M, HUANG C Y. Formation of soluble hydroxy aluminosilicates in soils and water systems and its significance[J]. Advances in Environmental Science, 1997, 5(1):57-60.]
[28] MATUS P. Evaluation of separation and determination of phytoavailable and phytotoxic aluminium species fractions in soil, sediment and water samples by five different methods[J]. Journal of Inorganic Biochemistry, 2007, 101(9):1214-1223.
[29] 许海波, 赵道远, 秦超, 等. 水稻土团聚体Cu2+吸附过程中铝的溶出及土壤溶液pH变化[J]. 环境科学, 2014, 35(1):248-253.[XU H B, ZHAO D Y, QIN C, et al. Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil[J]. Environmental Science, 2014, 35(1):248-253.]
[30] 林云琴, 王德汉, 何东文, 等. 造纸污泥堆肥与赤红壤模拟培养中活性铝释放特性[J]. 环境化学, 2009, 28(5):706-710.[LIN Y Q, WANG D H, HE D W, et al. Research on active aluminum release behavior by simulating experiment with paper mill sludge compost and red soil[J]. Environmental Chemistry, 2009, 28(5):706-710.]
[31] 秦瑞君, 陈福兴. 有机质对土壤高活性铝的影响[J]. 土壤通报, 1998, 29(3):111-112.[QIN R J, CHEN F X.Effect of organic matter on the soil of high active aluminium[J].Chinese Journal of Soil Science, 1998, 29(3):111-112.]
[32] 邬春华, 喻伟, 尹家元, 等. 污泥中活性铝的溶出及形态分布[J]. 环境化学, 2001, 20(3):261-264.[WU C H, YU W, YIN J Y, et al. Study on the leaching of active aluminum from sludge and the distribution of aluminum species[J]. Environmental Chemistry, 2001, 20(3):261-264.]
[1] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方元平,刘胜祥,项 俊,葛继稳. 湖北省榉树自然种群分布研究[J]. 长江流域资源与环境, 2007, 16(6): 744 .
[2] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[3] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[4] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[5] 刘 慧. 长江中游地区洪涝灾害的土地利用思考[J]. 长江流域资源与环境, 2004, 13(6): 616 -620 .
[6] 赵 艳, 李佳佳, Carl Sayer. 浅水湖泊孢粉和植物残体对水生植被的表现率[J]. 长江流域资源与环境, 2005, 14(4): 456 -459 .
[7] 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229 -233 .
[8] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[9] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[10] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .