长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 794-803.doi: 10.11870/cjlyzyyhj201605013

• 自然资源 • 上一篇    下一篇

长江流域近51a来日降水时空变异的多尺度特征

陈阿娇, 贺新光, 秦建新, 章新平   

  1. 湖南师范大学资源与环境科学学院, 湖南 长沙 410081
  • 收稿日期:2015-08-28 修回日期:2016-01-14 出版日期:2016-05-20
  • 通讯作者: 贺新光 E-mail:xghe@hunnu.edu.cn
  • 作者简介:陈阿娇(1991~),女,硕士研究生,主要研究方向为气候变化.E-mail:ajchen0807@163.com
  • 基金资助:
    国家自然科学基金项目(41472238,40971038);湖南省十二五重点学科地理学;湖南省教育厅科研项目(14A097)

MULTISCALE CHARACTERISTICS OF SPATIAL AND TEMPORAL VARIABILITY OF DAILY PRECIPITATION IN YANGTZE RIVER BASIN DURING 1963-2013

CHEN A-jiao, HE Xin-guang, QIN Jian-xin, ZhANG Xin-ping   

  1. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China
  • Received:2015-08-28 Revised:2016-01-14 Online:2016-05-20
  • Supported by:
    the National Natural Science Foundation of China, (41472238, 40971038);the Construct Program of the Key Discipline in Hunan Province of China;ScientificResearch Fund of Hunan Provincial Education Department of China Grant 14A097

摘要: 基于长江流域115个雨量站1963~2013年的日降水数据,应用小波多分辨分析结合信息论的方法,揭示长江流域近51 a来日降水时空变异的多尺度特征。结果表明:空间上,流域日降水序列的变异性具有明显的局部聚集性;并沿纬向呈现出显著的非均质性,而沿经向呈现出拟均匀性;并于103°E附近存在一条明显的分界线,界线以西的日降水变异程度显著高于界限以东的;且日降水变异性与高程之间存在较强的线性相关性,而与年降水量和年降水天数之间则存在较弱的相关性。时间上,流域各站点日降水子序列对原始序列总变异的相对贡献的大小于103°E附近也存在一条明显的分界线,界线以西,各时间尺度下子序列的贡献均大于界线以东;且这种相对贡献的谱图于256 d处呈现出突变现象。此外,流域降水变异的时间尺度可分为3个不同的区间:短期的(2~16 d)、年内的(16~256 d)和年际的(大于256 d)。

关键词: 小波变换, 信息论, 日降水, 多尺度变异性, 长江流域

Abstract: Based on the daily precipitation data of 115 rain gauging stations from 1963 to 2013 in the Yangtze River Basin, the multi-scale characteristics of spatial-temporal variability of precipitation in Yangtze River Basin during 1963-2013 are revealed by combining the wavelet multi-resolution analysis and the information entropy theory. The results show that, spatially, the variability of daily precipitation series exists obvious local clustering, significant heterogeneity along the latitudinal direction, and quasi uniformity along the longitudinal direction. There exists an obvious dividing line at approximately 103° longitude, and the variability in the west of this line is significantly higher than that in the east. The variability of daily precipitation has a strong linear correlation with elevation, and a weak linear correlation with mean annual precipitation and average number of rain days. Temporally, an obvious dividing line can be observed at approximately 103° longitude from the spectra of the relative contribution of each subseries to the total variability of the original daily precipitation series. In the west of the line, the contribution of each subseries at different temporal scales is higher than that in the east. And there exists an abruptness at the time scale of 256 days in the mutual information spectra. In addition, the time scale of the precipitation variability can be divided into three distinct scaling regions:(1) synoptic (2-16 days), (2) monthly to annual times (16-256 days) and (3) inter-annual (more than 256 days).

Key words: wavelet transform, information theory, daily precipitation, multiscale variability, Yangtze River Basin

中图分类号: 

  • P426.6
[1] BRUNSELL N A. A multiscale information theory approach to assess spatial-temporal variability of daily precipitation[J]. Journal of Hydrology, 2010, 385(1/4):165-172.
[2] 孙力, 安刚, 丁立, 等. 中国东北地区夏季降水异常的气候分析[J]. 气象学报, 2000, 58(1):70-82. [SUN L, AN G, DING L, et al. A climatic analysis of summer precipitation features and anomaly in northeast China[J]. Acta Meteorologica Sinica, 2000, 58(1):70-82.]
[3] 贾文雄.近50年来祁连山及河西走廊降水的时空变化[J]. 地理学报, 2012, 67(5):631-644. [JIA W X. Temporal and spatial changes of precipitation in Qilian Mountains and Hexi corridor during 1960-2009[J]. Acta Geographica Sinica, 2012, 67(5):631-644.]
[4] 吴浩云, 王银堂, 胡庆芳, 等. 太湖流域61年来降水时空演变规律分析[J]. 水文, 2013, 33(2):75-81. [WU H Y, WANG Y T, HU Q F, et al. Tempo-spatial change of precipitation in Taihu Lake Basin during recent 61 years[J]. Journal of China Hydrology, 2013, 33(2):75-81.]
[5] 余冲, 刘冀, 董晓华. 基于信息熵的湖北省降雨时空变化规律研究[J]. 水电能源科学, 2011, 29(1):6-8. [YU C, LIU J, DONG X H. Information entropy-based spatial and temporal variation rule of rainfall in Hubei Province[J]. Water Resources and Power, 2011, 29(1):6-8.]
[6] ZHANG Q, PENG J T, XU C Y, et al. Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China[J]. Theoretical and Applied Climatology, 2014, 115(3/4):703-712.
[7] JIANG T, SU B D, HARTMANN H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961-2000[J]. Geomorphology, 2007, 85(3/4):143-154.
[8] WANG W G, XING W Q, YANG T, et al. Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin, China[J]. Hydrological Processes, 2013, 27(24):3375-3393.
[9] 姜丽光, 姚治君, 魏义长, 等. 河南省雨季降水时空变异特征分析[J]. 地球信息科学学报, 2013, 15(3):395-400. [JIANG L G, YAO Z J, WEI Y C, et al. Analysis on the spatio-temporal variability of rainy season precipitation in Henan Province[J]. Journal of Geo-Information Science, 2013, 15(3):395-400.]
[10] 衡彤, 王文圣, 丁晶. 降水量时间序列变化的小波特征[J]. 长江流域资源与环境, 2002, 11(5):466-470. [HENG T, WANG W S, DING J. Wavelet characteristics of the change in precipitation time series[J]. Resources and Environment in the Yangtze Basin, 2002, 11(5):466-470.]
[11] HE X G, GUAN H D. Multiresolution analysis of precipitation teleconnections with large-scale climate signals:A case study in South Australia[J]. Water Resource Research, 2013, 49(10):6995-7008.
[12] CHAKRABARTI C G, CHAKRABARTY I. Shannon entropy:axiomatic characterization and application[J]. International Journal of Mathematics and Mathematical Sciences, 2005, 17:2847-2854.
[13] MOLINI A, LA BARBERA P, LANZA L G. Correlation patterns and information flows in rainfall fields[J]. Journal of Hydrology, 2006, 322(1/4):89-104.
[14] KLEEMAN R. Measuring dynamical prediction utility using relative entropy[J]. Journal of the Atmospheric Sciences, 2002, 59(13):2057-2072.
[15] MISHRA A K, ÖZGER M, SINGH V P. An entropy-based investigation into the variability of precipitation[J]. Journal of Hydrology, 2009, 370(1/4):139-154.
[16] 张翔, 宋晨, 吴绍飞. 淮河流域降雨时空变异与信息熵分析[J]. 中国科技论文, 2014, 9(5):551-554. [ZHANG X, SONG C, WU S F. Rainfall spatial variation and its information entropy analysis in Huaihe watershed[J]. China Science Paper, 2014, 9(5):551-554.]
[1] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[2] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[3] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[4] 董林垚, 许文盛, 胡波, 石劲松, 朱秀迪. 三峡蓄水前后宜昌-城陵矶水情多尺度变化特征分析[J]. 长江流域资源与环境, 2016, 25(12): 1870-1878.
[5] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[6] 邵骏, 欧应钧, 陈金凤, 郭卫. 基于水贫乏指数的长江流域水资源安全评价[J]. 长江流域资源与环境, 2016, 25(06): 889-894.
[7] 潘鑫, 刘元波. 1983~2012年长江流域地表净辐射变化特征[J]. 长江流域资源与环境, 2016, 25(03): 486-496.
[8] 杜耘. 保护长江生态环境,统筹流域绿色发展[J]. 长江流域资源与环境, 2016, 25(02): 171-179.
[9] 卢新海, 柯善淦. 基于生态足迹模型的区域水资源生态补偿量化模型构建——以长江流域为例[J]. 长江流域资源与环境, 2016, 25(02): 334-341.
[10] 张雷, 鲁春霞, 李江苏. 中国大河流域开发与国家文明发育[J]. 长江流域资源与环境, 2015, 24(10): 1639-1645.
[11] 白淑英, 顾海敏, 史建桥, 魏楚京. 近50 a长江流域暴雨日数时空变化分析[J]. 长江流域资源与环境, 2015, 24(07): 1255-1262.
[12] 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(06): 971-977.
[13] 段七零. 长江流域的空间结构研究[J]. 长江流域资源与环境, 2009, 18(9): 789-.
[14] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[15] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐宪立,张科利,孔亚平,陈济丁. 重庆市骨架公路网规划生态环境影响评价[J]. 长江流域资源与环境, 2006, 15(1): 107 -111 .
[2] 聂 坚, 白永平, 孙 克, 王世金. “红三角”地区城镇体系结构分形研究[J]. 长江流域资源与环境, 2008, 17(5): 673 .
[3] 张美玲,梁 虹,祝 安. 贵州省水资源承载力的空间地域差异[J]. 长江流域资源与环境, 2008, 17(1): 68 .
[4] 董方勇, 胡传林, 黄道明. 三峡水库水质保护与渔业利用关系探讨[J]. 长江流域资源与环境, 2006, 15(1): 93 -96 .
[5] 毕东苏, 郑广宏, 顾国维, 郭小品. 城市生态系统承载理论探索与实证——以长江三角洲为例[J]. 长江流域资源与环境, 2005, 14(4): 465 -469 .
[6] 王琳莉,陈 星. 一种新的汛期降水集中期划分方法[J]. 长江流域资源与环境, 2006, 15(3): 352 -355 .
[7] 敖荣军,. 中国地区经济差距及其演化的产业变动因素[J]. 长江流域资源与环境, 2007, 16(4): 420 .
[8] 张 虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3): 374 .
[9] 宋慧婷,吴振斌,贺 锋,成水平,梁 威,张丽萍. 武汉月湖和莲花湖表层沉积物中持久性有机物的污染状况[J]. 长江流域资源与环境, 2008, 17(3): 431 .
[10] 李恒鹏,王旭强,杨桂山,金 洋. 基于单元格网的STREAM分布式水文模型及其应用——以太湖上游西苕溪流域为例[J]. 长江流域资源与环境, 2007, 16(6): 715 .