长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1870-1878.doi: 10.11870/cjlyzyyhj201612010

• 自然资源 • 上一篇    下一篇

三峡蓄水前后宜昌-城陵矶水情多尺度变化特征分析

董林垚1,2, 许文盛1,2, 胡波1,2, 石劲松1,2, 朱秀迪1,2   

  1. 1. 长江水利委员会长江科学院, 湖北 武汉 430010;
    2. 水利部山洪地质灾害防治工程技术研究中心, 湖北 武汉 430010
  • 收稿日期:2016-04-15 修回日期:2016-08-09 出版日期:2016-12-20
  • 作者简介:董林垚(1987~),男,博士,研究方向为水文水资源.E-mail:linyaodonghydro@foxmail.com
  • 基金资助:
    国家自然科学基金(41501037)

ANALYSIS OF THE MULTIPLE DIMENSIONAL SPATIAL-TEMPORAL VARIATIONS OF HYDROLOGICAL REGIMES ALONG YICHANG TO CHENGLINGKAI DURING THE WATER STORAGE PROCESS IN THREE GORGES

DONG Lin-yao1,2, XU Wen-sheng1,2, HU Bo1,2, SHI Jin-song1,2, ZHU Xiu-di1,2   

  1. 1. Changjiang Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China;
    2. Research Center on Mountain Torrents and Geological Disaster Prevention, Ministry of Water Resources, Wuhan 430010, China
  • Received:2016-04-15 Revised:2016-08-09 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation(41501037)

摘要: 采用Morlet小波分解重构和频谱分析等方法,对宜昌、枝城、沙市、监利和城陵矶1997~2014年水位和流量及三峡水库2003~2014年入库、出库流量和库水位数据进行了统计分析,探究了各水文站在三峡建坝前后水情的变化特征及原因。结果表明:各观测站的水位和流量沿程递减,水位的年内波动处同一水平,研究河段内上游河段流量年内和年际变化比下游河段剧烈;各水文站水位和流量变化的显著周期为6.05、11.78、21.2、30.29和53个月,各水文站水位1 a周期变化幅度均在2 m以上,其他周期上的变化幅度为0.08~0.82 m;三峡水库蓄水活动对下游水文站水位和流量等水情的影响有限,主要反映在对水情趋势项的影响上,三峡大坝蓄水后,各水文站水位和流量受到一定程度影响,呈波动性递减变化。

关键词: 水位, 流量, 三峡大坝, 小波变换, 长江

Abstract: The water level and river discharges data in Yichang, Zhicheng, Shashi, Jianli and Chenglingji during 1997-2014, and the coupled with inflow, outflow and water level in Three Gorges during 2003-2014 were collected to detect the multiple dimensional spatial-temporal variations of hydrological regimes during the water storage process in Three Gorges. And the Mallat decomposition and reconstruction and spectrum analysis approaches were utilized during the analyses. The results indicate the following:(1) the water level and river discharge decrease along the Changjiang River. The annual fluctuations of water levels in different stations are in the same level, while the annual fluctuations of river discharges in the upstream region are more volatile than those in the downstream region; (2) the water regimes in the hydrological stations have the significant periodicities of 6.05, 11.78, 21.2, 30.29 and 53 months. The amplitude of water level in the peridicity of 1 year is above 2 m, while the amplitudes of water level in the other peridicities ranges from 0.08 to 0.82 m. (3) The water storage process in Three Gorges has limited impact on the water regims in the nearby hydrological stations. And the impact mainly conentrate on the trend variation, the water level and river discharge shows decrease trend after the water storage of the Three Gorges.

Key words: water level, river discharge, Three Gorges, wavelet transform, Changjiang River

中图分类号: 

  • P332
[1] ZHU J T, YOUNG M H, OSTERBERG J. Impacts of riparian zone plant water use on temporal scaling of groundwater systems[J]. Hydrological Processes, 2012, 26(9):1352-1360.
[2] 陈子燊, 高时友, 陈玲舫. 珠江口磨刀门水道盐度变化对水文气象要素的频率响应特征[J]. 海洋通报, 2015, 34(1):14-20.[CHEN Z S, GAO S Y, CHEN L F. Frequency response characteristics of salinity change to hydro-meteorological elements in Modaomen waterway of Pearl River Estuary[J]. Marine Science Bulletin, 2015, 34(1):14-20.]
[3] 付丛生, 陈建耀, 曾松青, 等. 滨海地区潮汐对地下水位变化影响的统计学分析[J]. 水利学报, 2008, 39(12):1365-1376.[FU C S, CHEN J Y, ZENG S Q, et al. Statistical analysis on impact of tide on water table fluctuation in coastal aquifer[J]. Journal of Hydraulic Engineering, 2008, 39(12):1365-1376.]
[4] DONG L Y, SHIMADA J, KAGABU M, et al. Teleconnection and climatic oscillation in aquifer water level in Kumamoto plain, Japan[J]. Hydrological Processes, 2015, 29(7):1687-1703.
[5] 孙卫国, 程炳岩. 交叉小波变换在区域气候分析中的应用[J]. 应用气象学报, 2008, 17(4):479-487.[SUN W G, CHENG B Y. Application of cross wavelet transformation to analysis on regional climate variations[J]. Journal of Applied Meteorological Science, 2008, 17(4):479-487.]
[6] 董林垚, 陈建耀, 付丛生, 等. 西江流域径流与气象要素多时间尺度关联性研究[J]. 地理科学, 2013, 33(2):209-215.[DONG L Y, CHEN J Y, FU C S, et al. Recognition on the relationship between runoff and regional meteorological factors of the Xijiang river in multi-time scales[J]. Scientia Geographica Sinica, 2013, 33(2):209-215.]
[7] ZHANG Q, XU C Y, JIANG T, et al. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China[J]. Journal of Hydrology, 2007, 333(2/4):265-274.
[8] FU C S, JAMES A L, WACHOWIAK M P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada[J]. Water Resource Research, 2012, 48(5), doi:10.1029/2011WR011507.
[9] 王文圣, 赵太想, 丁晶. 基于连续小波变换的水文序列变化特征研究[J]. 四川大学学报(工程科学版), 2006, 36(4):6-9.[WANG W S, ZHAO T X, DING J. Study on change characteristics of hydrological time series with continuous wavelet transform[J]. Journal of Sichuan University (Engineering Science Edition), 2006, 36(4):6-9.]
[10] 王文圣, 丁晶, 向红莲. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002, 13(4):515-520.[WANG W S, DING J, XIANG H L. Application and prospect of wavelet analysis in hydrology[J]. Advances in Water Science, 2002, 13(4):515-520.]
[11] 郑昱, 张闻胜. 基于小波变换的水文序列的近似周期检测法[J]. 水文, 1999(6):22-25.[ZHENG Y, ZHANG W S. Application of wavelet transform in detection of hydrological sequence period[J]. Journal of China Hydrology, 1999(6):22-25.]
[12] 李贤彬, 丁晶, 李后强. 水文时间序列的子波分析法[J]. 水科学进展, 1999, 10(2):144-149.[LI X B, DING J, LI H Q. Wavelet analysis of hydrological time series[J]. Advances in Water Science, 1999, 10(2):144-149.]
[13] 李贤彬, 丁晶, 李后强. 水文序列Hurst系数的子波估计[J]. 水利学报, 1999, 30(8):21-25.[LI X B, DING J, LI H Q. The wavelet estimation of Hurst coefficient in hydrological time series[J]. Journal of Hydraulic Engineering, 1999, 30(8):21-25.]
[14] ADAMOWSKI J F. River flow forecasting using wavelet and cross-wavelet transform models[J]. Hydrological Processes, 2008, 22(25):4877-4891.
[15] 中国长江三峡集团公司. 长江三峡工程运行实录(2003-2012年)[R]. 北京:中国长江三峡集团公司, 2013.
[16] 许足怀, 陈长英, 张幸农, 等. 三峡水库蓄水后湘江长沙段低水位变化规律研究[J]. 水利水运工程学报, 2014(5):81-86.[XU Z H, CHEN C Y, ZHANG X N, et al. Analysis of variation in water level of Changsha reach in Xiangjiang River after impoundment of the Three Gorges reservoir[J]. Hydro-Science and Engineering, 2014(5):81-86.]
[17] 余世鹏, 杨劲松, 刘广明, 等. 基于HHT的三峡水库蓄水后坝下游水情多尺度时频特征[J]. 长江流域资源与环境, 2014, 23(10):1441-1448.[YU S P, YANG J S, LIU G M, et al. Multi-scale time-frequency characteristics analysis of river dynamics downstream the three gorges dam after its impoundment based on HHT[J]. Resources and Environment in the Yangtze Basin, 2014, 23(10):1441-1448.]
[18] 李景保, 代勇, 欧朝敏, 等. 长江三峡水库蓄水运用对洞庭湖水沙特性的影响[J]. 水土保持学报, 2011, 25(3):215-219.[LI J B, DAI Y, OU C M, et al. Effects of store water application of the three-gorges reservoir on Yangtze River on water and sediment characteristics in the Dongting Lake[J]. Journal of Soil and Water Conservation, 2011, 25(3):215-219.]
[19] 郭鸿博. 三峡大坝上游及坝下溶解氧变化规律研究[J]. 中国水运, 2008, 8(7):146-147.[GUO H B. Analysis of the variety and impact factors of dissolved oxygen downstream of Three Gorges Dam after the impoundment[J]. China Water Transport, 2008, 8(7):146-147.]
[20] 卢金友, 张细兵, 姚仕明. 人类活动影响下长江中下游江湖治理问题探讨[J]. 人民长江, 2013, 44(10):18-22.[LU J Y, ZHANG X B, YAO S M. Problems of river and lake regulation in middle and lower Yangtze River under influence of human activity[J]. Yangtze River, 2013, 44(10):18-22.]
[21] 汤成友, 王瑞, 缈韧. 离散小波变换在水文序列分解中的应用[J]. 中国农村水利水电, 2007(2):106-108.[TANG C Y, WANG R, MIAO R. Application of discrete wavelet transform in hydrological series decomposition[J]. China Rural Water and Hydropower, 2007(2):106-108.]
[22] 艾学山, 董前进, 王先甲, 等. 小波分维估计法在三峡水库汛期洪水分期中的应用[J]. 系统工程理论与实践, 2009, 29(1):145-151.[AI X S, DONG Q J, WANG X J, et al. Application of wavelet fractal dimension estimation method to flood season staged of Three Gorges Reservoir[J]. Systems Engineering-Theory & Practice, 2009, 29(1):145-151.]
[23] DONG L Y, SHIMADA J, KAGABU M, et al. Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea[J]. Environmental Monitoring and Assessment, 2015, 187(1):4187.
[24] FULLER W A. Introduction to statistical time series[M]. New York:John Wiley and Sons, 1976.
[25] BENDAT J S, PIERSOL A G. Random data:analysis and measurement procedures[M]. New York:John Wiley and Sons, 1991.
[26] 过寒超, 秦琳琳, 牛凤霞, 等. 宜昌市近59年来的气候变化趋势分析[J]. 三峡大学学报(自然科学版), 2011, 33(5):26-30.[GUO H C, QIN L L, NIU F X, et al. Analysis of climate change tendency in Yichang city in recent 59 years[J]. Journal of China Three Gorges University (Natural Sciences), 2011, 33(5):26-30.]
[27] 姜彤, 苏布达, 王艳君, 等. 四十年来长江流域气温、降水与径流变化趋势[J]. 气候变化进展, 2005, 1(2):65-68.[JIANG T, SU B D, WANG Y J, et al. Trends of temperature, precipitation and runoff in the Yangtze river basin from 1961 to 2000[J]. Advances in Climate Change Research, 2005, 1(2):65-68.]
[1] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11.
[2] 刘云强, 权 泉, 朱佳玲, 王 芳. 绿色技术创新、产业集聚与生态效率——以长江经济带城市群为例[J]. 长江流域资源与环境, 2018, 27(11): 2395-2406.
[3] 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797-805.
[4] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[5] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[6] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[7] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705.
[8] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[9] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[10] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[11] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[12] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[13] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[14] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[15] 成定平, 淦苏美. 长江经济带高技术产业投入产出效率分析[J]. 长江流域资源与环境, 2017, 26(03): 325-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[5] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[6] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[7] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[8] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[9] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[10] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .