长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 297-303.doi: 10.11870/cjlyzyyhj201702016

• 生态环境 • 上一篇    下一篇

南淝河表层水中重金属空间分布、污染评价及来源

王秀1, 王振祥1,2, 潘宝1, 周春财2, 刘桂建2   

  1. 1. 合肥工业大学资源与环境工程学院, 安徽 合肥 230009;
    2. 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026
  • 收稿日期:2016-06-21 修回日期:2016-09-18 出版日期:2017-02-20
  • 通讯作者: 刘桂建,E-mail:lgj@ustc.edu.cn E-mail:lgj@ustc.edu.cn
  • 作者简介:王秀(1992~),女,硕士研究生,主要从事水体污染方面研究.E-mail:917490659@qq.com
  • 基金资助:
    安徽省环境保护科研课题(2015-011)

SPATIAL DISTRIBUTION, CONTAMINATION ASSESSMENTS AND SOURCES OF HEAVY METALS IN SURFACE WATER FROM THE NANFEI RIVER

WANG Xiu1, WANG Zhen-xiang1,2, PAN Bao1, ZHOU Chun-cai2, LIU Gui-jian2   

  1. 1. School of Resources and Environmental Engineering, Hefei University of Technology, Heifei 230009, China;
    2. School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, China
  • Received:2016-06-21 Revised:2016-09-18 Online:2017-02-20
  • Supported by:
    Environmental Protection Research Project of Anhui Province (2015-011)

摘要: 根据南淝河丰水期和枯水期水质的调查数据,采用单因子水质指数法和改进后的模糊综合评价法对水中重金属元素的污染进行了评价,确定了主要污染因子和优先控制断面,并利用主成分分析法对重金属污染进行了溯源分析。结果表明:Cr、Cu、Pb的含量平均值均为枯水期高于丰水期,而As、Cd的含量平均值均为枯水期低于丰水期。单因子水质指数法评价结果显示南淝河重金属污染的主要污染因子是Cd,丰水期和枯水期各采样点Cd的含量均达到地表水Ⅴ类水标准,最高值达到地表水Ⅴ类标准值的2.6倍。改进后模糊综合评价法评价结果显示南淝河水质丰水期基本属于地表水环境质量标准Ⅱ类水标准,潜山北路大桥断面污染最严重,属于优先控制断面,枯水期各断面水质均属于Ⅲ类水标准,整体上南淝河水质达到了水体功能区目标。主成分分析法结果显示,南淝河重金属污染的主要来源是流域内的农药化肥、机械制造和电镀行业的废水以及河道的行船。

关键词: 南淝河, 重金属, 单因子水质指数法, 模糊综合评价法, 主成分分析法

Abstract: Based on the water quality investigation data of the Nanfei River during the wet and dry season, the single factor water quality identification index method and a improved fuzzy comprehensive evaluation model were employed to evaluate the quality status of heavy metals. The main pollution factors and the priority control section were determined. The principal component analysis (PCA) was applied to estimate the sources of heavy metal. The results showed that the average concentrations of Cr, Cu, Pb in dry season were higher than that in wet season, but the average concentrations of As, Cd in wet season were higher than that in dry season. The results of single factor water quality identification index method showed that the main pollution factors of heavy metal pollution in river Nanfeihe was Cd. The concentration of Cd in each sampling point exceeded the Class V according to standards of the national groundwater environmental quality during the wet and dry season. The highest value is 2.6 times Class V standard. The improved fuzzy comprehensive evaluation results showed that the water quality of the Nanfei River basically belonged to Class II according to standard. The pollution of the section of Qianshan North Road Bridge was the most serious, and this section belongs to the priority control section. The water quality of the Nanfei River belonged to Class III in dry season. Overall, the water quality of NanFei River reached the goal of water body function area. The contamination sources of heavy metals through the principal component analysis (PCA) revealed that the heavy metals contamination in NanFei River were caused by pesticides and fertilizers and wastewaters from mechanical manufacturing and electroplating industry and the boat in the river.

Key words: NanFei River, heavy metal, single factor water quality identification index method, fuzzy comprehensive evaluation, principal component analysis

中图分类号: 

  • X824
[1] DOU Y G, LI J, ZHAO J T, et al. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea[J]. Marine Pollution Bulletin, 2013, 67(1/2):137-145.
[2] 沈烁, 杨长明, 杨殿海. 合肥市南淝河不同排口表层沉积物磷形态分布特征[J]. 环境工程学报, 2014, 8(9):3704-3710.[SHEN S, YANG C M, YANG D H. Distribution characteristics of phosphorus forms in the surface sediment from different discharging points along the Nanfei River in Hefei City, Anhui Province[J]. Chinese Journal of Environmental Engineering, 2014, 8(9):3704-3710.]
[3] 梁止水, 邓琳, 高海鹰, 等. 南淝河底泥中氮磷空间分布规律及污染评价[J]. 环境工程, 2013, 31(S):124-127, 183.[LIANG Z S, DENG L, GAO H Y, et al. Nitrogen and phosphor spatial distribution patterns in the sediments of Nanfei River and pollution assessment[J]. Environmental Engineering, 2013, 31(S):124-127, 183.]
[4] 邓琳, 李宏卓, 廖达伟, 等. 南淝河沉积物有机物污染及其生态风险评价[J]. 环境科学与技术, 2011, 34(8):179-184.[DENG L, LI H Z, LIAO D W, et al. Pollution of organic compounds in sediments of Nanfei River and its ecological risk assessment[J]. Environmental Science & Technology, 2011, 34(8):179-184.]
[5] 孔明, 彭福全, 张毅敏, 等. 环巢湖流域表层沉积物重金属赋存特征及潜在生态风险评价[J]. 中国环境科学, 2015, 35(6):1863-1871.[KONG M, PENG F Q, ZHANG Y M, et al. Occurrence characteristic and potential risk assessment of heavy metals in surface sediments of Circum-Chaohu Basin[J]. China Environmental Science, 2015, 35(6):1863-1871.]
[6] 李国莲, 刘桂建, 姜萌萌, 等. 巢湖表层沉积物与上覆水体中重金属分配特征及其相关性研究[J]. 中国科学技术大学学报, 2011, 41(1):9-15.[LI G L, LIU G J, JIANG M M, et al. Partition characteristics and correlation of heavy metal between sediment and surface water from Chaohu Lake[J]. Journal of University of Science and Technology of China, 2011, 41(1):9-15.]
[7] 杨晓辉, 尹爱经, 高超. 巢湖主要入湖河流表层沉积物镉的分布特征及污染评价[J]. 长江流域资源与环境, 2014, 23(2):237-241.[YANG X H, YIN A J, GAO C. Distribution and risk evaluation of cadmium in surface sediments from the major inflow rivers of Chaohu Lake[J]. Resources and Environment in the Yangtze Basin, 2014, 23(2):237-241.]
[8] 杨学福, 关建玲, 王蕾, 等. 渭河陕西段水体中重金属的时空动态变化特征研究[J]. 安全与环境学报, 2013, 13(6):115-119.[YANG X F, GUAN J L, WANG L, et al. Spatial and temporal variation features of heavy metal pollutants in the Weihe River in Shaanxi[J]. Journal of Safety and Environment, 2013, 13(6):115-119.]
[9] 韩晓刚, 黄廷林, 陈秀珍. 改进的模糊综合评价法及在给水厂原水水质评价中的应用[J]. 环境科学学报, 2013, 33(5):1513-1518.[HAN X G, HUANG T L, CHEN X Z. Improved fuzzy synthetic evaluation method and its application in raw water quality evaluation of water supply plant[J]. Acta Scientiae Circumstantiae, 2013, 33(5):1513-1518.]
[10] 徐祖信. 我国河流单因子水质标识指数评价方法研究[J]. 同济大学学报(自然科学版), 2005, 33(3):321-325.[XU Z X. Single factor water quality identification index for environmental quality assessment of surface water[J]. Journal of Tongji University (Natural Science), 2005, 33(3):321-325.]
[11] 徐兵兵, 张妙仙, 王肖肖. 改进的模糊层次分析法在南苕溪临安段水质评价中的应用[J]. 环境科学学报, 2011, 31(9):2066-2072.[XU B B, ZHANG M X, WANG X X. Application of an improved fuzzy analytic hierarchy process in water quality evaluation of the South Tiaoxi River, Lin'an Section[J]. Acta Scientiae Circumstantiae, 2011, 31(9):2066-2072.]
[12] 孙清展, 臧淑英, 张囡囡. 基于模糊综合评价的湖水重金属污染评价与分析[J]. 环境工程, 2012, 30(1):111-115.[SUN Q Z, ZANG S Y, ZHANG N N. Pollution evaluation of heavy metals in lake water based on fuzzy comprehensive assessment[J]. Environmental Engineering, 2012, 30(1):111-115.]
[13] 李磊, 平仙隐, 王云龙, 等. 春、夏季长江口海域表层沉积物中重金属污染的模糊综合评价及来源分析[J]. 海洋环境科学, 2014, 33(1):46-52.[LI L, PING X Y, WANG Y L, et al. Fuzzy comprehensive evaluation and analysis of source of heavy metals pollution in surface sediments from Changjiang Estuary in spring and summer[J]. Marine Environmental Science, 2014, 33(1):46-52.]
[14] 马迎群, 时瑶, 秦延文, 等. 浑河上游(清原段)水环境中重金属时空分布及污染评价[J]. 环境科学, 2014, 35(1):108-116.[MA Y Q, SHI Y, QIN Y W, et al. Temporal-spatial distribution and pollution assessment of heavy metals in the upper reaches of Hunhe River (Qingyuan section), Northeast China[J]. Environmental Science, 2014, 35(1):108-116.]
[15] HUDSON-EDWARDS K A, HOUGHTON S L, OSBORN A. Extraction and analysis of arsenic in soils and sediments[J]. TrAC Trends in Analytical Chemistry, 2004, 23(10/11):745-752.
[16] GRAY C W, MCLAREN R G, ROBERTS A H C, et al. The effect of long-term phosphatic fertiliser applications on the amounts and forms of cadmium in soils under pasture in New Zealand[J]. Nutrient Cycling in Agroecosystems, 1999, 54(3):267-277.
[17] 李玉, 俞志明, 宋秀贤. 运用主成分分析(PCA)评价海洋沉积物中重金属污染来源[J]. 环境科学, 2006, 27(1):137-141.[LI Y, YU Z M, SONG X X. Application of principal component analysis (PCA) for the estimation of source of heavy metal contamination in marine sediments[J]. Environmental Science, 2006, 27(1):137-141.]
[18] ZAHARESCU D G, HOODA P S, SOLER A P, et al. Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees[J]. Science of the Total Environment, 2009, 407(11):3546-3553.
[19] 张兆永, 吉力力·阿不都外力, 姜逢清, 等. 天山地表水重金属的赋存特征和来源分析[J]. 中国环境科学, 2012, 32(10):1799-1806.[ZHANG Z Y, JILILI·ABUDUWAILI, JIANG F Q, et al. Contents and sources of heavy metals in surface water in the Tianshan Mountain[J]. China Environmental Science, 2012, 32(10):1799-1806.]
[20] 陈培飞, 张嘉琪, 毕晓辉, 等. 天津市环境空气PM10和PM2.5中典型重金属污染特征与来源研究[J]. 南开大学学报(自然科学版), 2013, 46(6):1-7.[CHEN P F, ZHANG J Q, BI X H, et al. Pollution characteristics and sources of heavy metals in PM10 and PM2.5 in Tianjin City[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2013, 46(6):1-7.]
[21] 彭修强, 项立辉, 郭娜, 等. 南黄海南部海域表层沉积物重金属来源解析及风险评价[J]. 环境科学学报, 2015, 35(11):3628-3638.[PENG X Q, XIANG L H, GUO N, et al. Sources identification and hazardous risk delineation of heavy metals contamination in surface sediments in the southern of the South Yellow Sea[J]. Acta Scientiae Circumstantiae, 2015, 35(11):3628-3638.]
[22] FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2001, 114(3):313-324.
[1] 夏芳, 王秋爽, 蔡立梅, 杨超, 冯志州, 唐翠华, 卫瀛海, 许振成. 有色冶金区土壤-蔬菜系统重金属污染特征及健康风险分析[J]. 长江流域资源与环境, 2017, 26(06): 865-873.
[2] 李杨, 李海东, 施卫省, 何俊德, 胡亚文. 基于神经网络的土壤重金属预测及生态风险评价[J]. 长江流域资源与环境, 2017, 26(04): 591-597.
[3] 任俊霖, 李浩, 伍新木, 李雪松. 基于主成分分析法的长江经济带省会城市水生态文明评价[J]. 长江流域资源与环境, 2016, 25(10): 1537-1544.
[4] 党丽娜, 梅杨, 廖祥森, 刘颖颖. 城市不同交通圈(带)土壤重金属多元统计分析及空间分布研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(06): 925-931.
[5] 蒋豫, 刘新, 高俊峰, 蔡永久. 江苏省浅水湖泊表层沉积物中重金属污染特征及其风险评价[J]. 长江流域资源与环境, 2015, 24(07): 1157-1162.
[6] 柳云龙, 章立佳, 庄腾飞, 韩晓非, 卢小遮. “城郊乡”梯度下土壤Cu、Zn、Pb含量的空间变异特征[J]. 长江流域资源与环境, 2015, 24(07): 1207-1213.
[7] 余光辉, 云琨, 翁建兵, 朱佳文, 张勇. 湘潭锰矿重金属环境安全及植物耐性研究[J]. 长江流域资源与环境, 2015, 24(06): 1046-1051.
[8] 弓晓峰, 孙明哲, 陈春丽, 王佳佳, 刘春英, 杨菊云, 向洪锐, 方亮. 盲数优化地积累模型评价长江中下游湖泊沉积物重金属污染[J]. 长江流域资源与环境, 2015, 24(05): 824-831.
[9] 刘足根, 彭昆国, 方红亚, 李惠民, 廖 兵. 江西大余县荡坪钨矿尾矿区自然植物组成及其重金属富集特征[J]. 长江流域资源与环境, 2010, 19(2): 220-.
[10] 庄平, 赵优, 章龙珍, 冯广朋, 刘鉴毅. 三种重金属对长江口纹缟虾虎鱼早期发育的毒性作用[J]. 长江流域资源与环境, 2009, 18(8): 719-.
[11] 胡冠九, 孙成, 杨敏娜, 陈素兰, 李娟, 王荟, 章勇. 长江江苏段主干断面污染物健康风险评价[J]. 长江流域资源与环境, 2009, 18(8): 771-.
[12] 许薇薇, 袁旭音, 黄小荣. 通吕运河河滩沉积物重金属及营养元素的季节性特征[J]. 长江流域资源与环境, 2009, 18(7): 674-.
[13] 汪福顺 刘丛强 灌 瑾 吴明红. 贵州阿哈水库沉积物中重金属二次污染的趋势分析[J]. 长江流域资源与环境, 2009, 18(4): 379-.
[14] 赵 健, 毕春娟, 陈振楼. 长江口潮滩沉积物中活性重金属的空间分异及控制机制[J]. 长江流域资源与环境, 2009, 18(11): 1020-.
[15] 陈翠华,倪师军,何彬彬,张成江. 江西德兴矿集区水系沉积物重金属污染分析[J]. 长江流域资源与环境, 2008, 17(5): 766-766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[4] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[5] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .