长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 943-948.doi: 10.11870/cjlyzyyhj201506007

• 自然资源 • 上一篇    下一篇

气候变化下SPEI指数在嘉陵江流域的干旱评估应用

叶磊1,2, 周建中1,2, 曾小凡1,2, 张海荣1,2, 卢鹏1,2   

  1. 1. 华中科技大学水电与数字化工程学院, 湖北 武汉 430074;
    2. 华中科技大学数字流域科学与技术湖北省重点实验室, 湖北 武汉 430074
  • 收稿日期:2014-05-12 修回日期:2014-06-30 出版日期:2015-06-20
  • 作者简介:叶 磊(1989~ ),男,博士研究生,主要从事水文预报及水文分析计算等研究.E-mail:yelei@hust.edu.cn*
  • 基金资助:
    国家自然科学基金重点项目(51239004);国家自然科学基金(51309105)

APPLICATION OF SPEI FOR THE CHANGES OF DROUGHT IN JIALING RIVER BASIN UNDER CLIMATE CHANGE

YE Lei1,2, ZHOU Jian-zhong1,2, ZENG Xiao-fan1,2, ZHANG Hai-rong1,2, LU Peng1,2   

  1. 1. College of Hydropower & Information Engineering, Huazhong University of Science & Technology, Wuhan 430074, China;
    2. Hubei Key Laboratory of Digital Valley Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2014-05-12 Revised:2014-06-30 Online:2015-06-20
  • Contact: 周建中 E-mail:jz.zhou@hust.edu.cn

摘要: 基于嘉陵江流域1962~2010年实测月降水和月平均气温数据,利用不同时间尺度(3、6、9、12个月)的SPI和SPEI指数分析了近50 a来流域干旱趋势的时空演变规律。对不同时间尺度的SPI及SPEI指数分析表明,1962~2010年嘉陵江流域整体呈干旱增加趋势,特别是流域西部和北部呈现出明显的干旱增加趋势,而流域东部的干旱增加趋势并不明显,个别站点附近还呈现出微弱的干旱减少趋势。SPI及SPEI指数的变化还表明,嘉陵江流域在大时间尺度上的干旱增加趋势更为明显,大时间尺度的干旱事件主要由降雨量决定,而气温变化对干旱趋势的影响则在小时间尺度上更为显著。此外,对于相同的时间尺度,SPEI指数相较于SPI指数检验出更为明显的干旱增加趋势,表明考虑气温影响的SPEI干旱指数更能够检测干旱事件的变化规律,因此SPEI干旱指数更适用于气候变化条件下流域干旱演变特征分析。

关键词: 干旱, SPEI, 时空变化, 嘉陵江流域, 趋势分析

Abstract: In order to scientifically analyze spatial and temporal changes of drought, this paper selects the Jialing river Basin as the research basin and SPI and SPEI indices are used as indices of drought. To analyze the spatial and temporal changes of drought in the Jialing River basin, both SPI and SPEI drought indices for time scales of 3, 6, 9 and 12 months are calculated first, based on observed monthly precipitation data and monthly average temperature data from the basin. The data covers the period from 1962 to 2010. Subsequently, the MK test is used to detect the trend of SPI and SPEI series. The SPI and SPEI indices of most stations are characterized by negative MK values for different time scales. Furthermore most of the stations pass significant test at >95% confidence level, some of them even pass significant test at >99% confidence level. The MK values of SPI and SPEI drought show that drought has an increasing trend in most of the basin. The spatial changes of drought show that significant drought increasing trend is detected by the MK values of both SPI and SPEI in the western and northern basin, while drought doesn't have obvious increasing trend in eastern basin, even several stations in eastern basin show a slight decreasing tendency for drought. Mathematically, the SPEI is very similar to the SPI, but it includes the role of temperature. The SPI and SPEI variations on different time scales also show that the Jialing River Basin has a more obvious increasing trend for drought on the large time scale. The SPI and SPEI indices show obvious differences in detecting spatial changes of drought trend for time scales of 3 and 6 months. The drought trend detected by SPEI is more significant which shows temperature changes has an important influence on drought for small time scales. However, the difference in the SPI and SPEI indices is smaller for time scales of 9 and 12 months which indicates that trend of drought on the large time scale is dominated by the precipitation mainly. In addition, for the same time scale, drought in the Jialing River basin shows a more severe increasing trend by applying SPEI index compared to SPI, which shows SPEI index considering the effects of temperature can test out the increasing trend of drought in a more effective way. Therefore, SPEI index is more suitable for the analysis of drought evolution characteristics of river basin under the condition of climate change.

Key words: drought, SPEI, spatial and temporal changes, Jialing River Basin, trend analysis

中图分类号: 

  • TV122
[1] HOUGHTON J T,MEIRA-FILHO L G,CALLANDER B A,et al.Climate change 1995:The science of climate change[M].New York:Cambridge University Press,1996.
[2] STAROSOLSZKY O,MELDER O M.Hydrology of Disasters[M].London:WMO,1989.
[3] RIEBSAME W E,CHANGNON S A J,KARL T R.Drought and natural resources management in the United States,impacts and implications of the 1987-1989 Drought[M].Boulder:Westview Press,1991.
[4] WILHITE D A.Drought as a natural hazard:Concepts and definitions[C]//WILHITE D A,ed.Drought:A Global Assessment.London & New York:Routledge,2000:3-18.
[5] 严登华,袁 喆,杨志勇,等.1961年以来海河流域干旱时空变化特征分析[J].水科学进展,2013,24(1):34-41.
[6] 庄少伟,左洪超,任鹏程,等.标准化降水蒸发指数在中国区域的应用[J].气候与环境研究,2013,18(5):617-625.
[7] VICENTE-SERRANO S M,BEGUERÍA S,LÓPEZ-MORENO J I.A multi-scalar drought index sensitive to global warming:The Standardized Precipitation Evapotranspiration Index-SPEI[J].J Climate,2010,23:1696-1718.
[8] 许武成,王 文,黎 明.嘉陵江流域洪水等级的建议划分标准[J].自然灾害学报,2005,14(3):51-55.
[9] 韩 萍,王鹏新,王彦集,等.多尺度标准化降水指数的ARIMA模型干旱预测研究[J].干旱地区农业研究,2008,26(2):212-218.
[10] MCKEE T B,DOESKIN N J,KLEIST J.The relationship of drought frequency and duration to time scales[C]//Proceeding of 8th Conference on Applied Climatology.Boston:American Meteorological Societ,1993:179-184.
[11] THORNTHWAITE C W.An approach toward a rational classification of climate[J].Geographical Review,1948,38(1):55-94.
[12] KENDALL M G.Rank correlation methods[M].London:Charles Griffin,1975:1-202.
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578-2587.
[3] 王水霞, 殷淑燕, 赵芮芮, 周亚利. 秦岭南部地区农业气候资源的变化及其对油菜的影响[J]. 长江流域资源与环境, 2017, 26(06): 882-893.
[4] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[5] 刘静, 殷淑燕. 1960~2014年秦岭南北无霜期时空变化特征及对比分析[J]. 长江流域资源与环境, 2017, 26(04): 615-623.
[6] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[7] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[8] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[9] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[10] 刘世杰, 苏舒, 梁亮, 童小华. 基于植被状态指数的干旱化特征及气候驱动因素分析——以江苏省为例[J]. 长江流域资源与环境, 2016, 25(12): 1927-1933.
[11] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[12] 陈晶, 顾世祥, 何大明, 陈刚. 近60多年来滇池流域干旱特性及重现期分析[J]. 长江流域资源与环境, 2016, 25(09): 1457-1465.
[13] 何华春, 周汝佳. 基于景观格局的盐城海岸带土地利用时空变化分析[J]. 长江流域资源与环境, 2016, 25(08): 1191-1199.
[14] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[15] 李军, 王兆礼, 黄泽勤, 钟睿达, 卓圣峰, 陈希贤. 基于SPEI的西南农业区气象干旱时空演变特征[J]. 长江流域资源与环境, 2016, 25(07): 1142-1149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[2] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[3] 金晓斌,易理强,王慎敏,周寅康. 基于协调发展视角的区域发展差异研究[J]. 长江流域资源与环境, 2008, 17(4): 511 .
[4] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[5] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[6] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[7] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .
[8] 王月容, 周金星, 周志翔, 孙启祥. 洞庭湖退田还湖区不同土地利用方式对土壤养分库的影响[J]. 长江流域资源与环境, 2010, 19(06): 634 .
[9] 段金荣, 张红燕, 刘凯, 徐东坡, 张敏莹, 施炜纲. 湖泊的宜渔性评价研究——以蠡湖为例[J]. 长江流域资源与环境, 2010, 19(06): 666 .
[10] 余真真, 王玲玲, 戴会超, 成高峰. 三峡水库香溪河库湾水温分布特性研究[J]. 长江流域资源与环境, 2011, 20(1): 84 .