长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 945-954.doi: 10.11870/cjlyzyyhj201706017

• 生态环境 • 上一篇    

近52a西南地区潜在蒸散发时空变化特征

郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆   

  1. 四川农业大学林学院, 四川 成都 611130;四川农业大学, 水土保持与荒漠化防治重点实验室, 四川 成都 611130
  • 收稿日期:2016-11-01 修回日期:2016-12-30 出版日期:2017-06-20
  • 通讯作者: 郑江坤,E-mail:jiangkunzheng@126.com E-mail:jiangkunzheng@126.com
  • 作者简介:郎登潇(1991~),女,硕士研究生,主要从事气候变化与水土保持研究.E-mail:langdengxiao818@163.com
  • 基金资助:
    国家自然科学基金项目(41601028);中国博士后科学基金面上项目(2012M511938)

SPATIAL AND TEMPORAL VARIATIONS OF POTENTIAL EVAPOTRANSPIRATION IN SOUTHWESTERN CHINA FROM 1962 TO 2013

LANG Deng-xiao, SHI Jia-qi, ZHENG Jiang-kun, LIAO Feng, MA Xing, WANG Wen-wu, CHEN Yi-fan   

  1. College of Forestry Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory of Soil and Water Conservation & Desertification Combating, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2016-11-01 Revised:2016-12-30 Online:2017-06-20
  • Supported by:
    National Natural Science Foundation of China (41601028);China Postdoctoral Science Foundation funded project (2012M511938)

摘要: 潜在蒸散发对水资源评价和气候变化均具有重要意义。采用Penman-Monteith公式和气象观测资料计算了中国西南地区90个气象站的潜在蒸散发,并采用多种统计方法分析了潜在蒸散发的时空变化特征。结果表明:(1)西南地区近52a的平均潜在蒸散发为3 209.8 mm,其中云南省潜在蒸散发最高(3 664.7 mm),其次为四川省(3 015.0 mm)、重庆市(2 972.4 mm)、贵州省(2 958.0 mm)。四季潜在蒸散发空间分布特征与年不同,从大到小排序为夏季,春季,秋季,冬季。(2)西南地区整体呈增加趋势(0.9 mm/10 a),其中31个站点呈减少趋势(p<0.1),17个站点呈增加趋势(p<0.1),其余站点变化趋势不显著。大部分站点春季(55.6%)和夏季(63.3%)呈减少趋势,秋季(62.2%)和冬季(58.9%)则呈增加趋势。(3)经Mann-Kendall突变检验,该区整体潜在蒸散发的突变时间为1995年(p<0.05);单个站点突变检验显示,76个站点发生突变,突变年份集中于1980s,未发生突变的站点主要分布于青藏高原东缘。整体上看,近52a来西南地区潜在蒸散发略呈增加趋势,并存在突变点,但部分站点存在相反的变化趋势,这和复杂的地形环境和气候特征有较大关系,体现出西南地区水文气象变化的独特性。

关键词: 潜在蒸散发, Penman-Monteith公式, Mann-Kendall检验, 变化趋势, 西南地区

Abstract: Potential evapotranspiration (PET) is crucial to water resources assessment and climate change. Based on the Penman-Monteith equation proposed by Food and Agriculture Organization (FAO) and daily meteorological data of 90 meteorological stations in Southwestern China, daily potential evapotranspiration at 90 meteorological stations was calculated. Then, various statistical methods were used to analyze its spatial and temporal variations. The results showed that the mean annual potential evapotranspiration in the whole Southwestern China during the recent 52 years was 3 209.8 mm, the highest potential evapotranspiration value was observed in Yunnan Province (3 664.7 mm), followed by Sichuan Province (3 015.0 mm), Guizhou Province (2 958.0 mm), and Chongqing Municipality (2 972.4 mm). PET in summer was the highest, followed by spring, autumn and winter. Distribution characteristics of four seasons are different from that of annual mean. Moreover, the linear changing trend of potential evapotranspiration in Southwestern China was 0.9 mm/10a. There are 31 stations showing a decreasing trend (p<0.1) and 17 stations showing an increasing trend (p<0.1). Decreasing PET in spring and summer was found at 55.6% and 63.3% of all stations, respectively. While increasing PET in autumn and winter was found at 62.2% and 58.9% of all stations, respectively. Through the abrupt change test and moving t-test, a significant abrupt point was found in 1995 for PET of Southwestern China (p<0.05). Among the 90 stations, abrupt points of 76 stations concentrated in the 1980s. In additional, 15 stations had no abrupt points which mainly distributed in the eastern margin of the Tibetan Plateau. On the whole, PET in Southwestern China increased slightly from 1962 to 2013. However, some regions appeared an opposite trend. The abrupt test also showed the same pattern. Complex terrain environment and climate characteristics are the main factors reflecting the unique feature of hydrometeorology changes in Southwestern China.

Key words: potential evapotranspiration, Penman-Monteith equation, Mann-Kendall test, changing trend, Southwestern China

中图分类号: 

  • S161.4
[1] FISHER J B, WHITTAKER R J, MALHI Y. ET come home:potential evapotranspiration in geographical ecology[J]. Global Ecology and Biogeography, 2011, 20(1):1-18.
[2] 刘小莽, 郑红星, 刘昌明, 等. 海河流域潜在蒸散发的气候敏感性分析[J]. 资源科学, 2009, 31(9):1470-1476.[LIU X M, ZHENG H X, LIU C M, et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin[J]. Resources Science, 2009, 31(9):1470-1476.]
[3] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration:Guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56[R]. Rome:Food and Agriculture Organization of the United Nations, 1998.
[4] 张晓琳, 熊立华, 林 琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2):229-237.[ZHANG X L, XIONG L H, LIN L, et al. Application of five potential evapotranspiration equations in Hanjiang Basin[J]. Arid Land Geography, 2012, 35(2):229-237.]
[5] 杜加强, 熊珊珊, 刘成程, 等. 黄河上游地区几种参考作物蒸散量计算方法的适用性比较[J]. 干旱区地理, 2013, 36(5):831-840.[DU J Q, XIONG S S, LIU C C, et al. Comparison of models for estimating reference crop evapotranspiration in the headwater catchment of the Yellow River basin, China[J]. Arid Land Geography, 2013, 36(5):831-840.]
[6] 左德鹏, 徐宗学, 李景玉, 等. 气候变化情景下渭河流域潜在蒸散量时空变化特征[J]. 水科学进展, 2011, 22(4):455-461.[ZUO D P, XU Z X, LI J Y, et al. Spatiotemporal characteristics of potential evapotranspiration in the Weihe River basin under future climate change[J]. Advances in Water Science, 2011, 22(4):455-461.]
[7] GUO S L, GUO J, ZHANG J, et al. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin[J]. Science in China Series E:Technological Sciences, 2009, 52(11):3234-3239.
[8] RAHIMI KHOOB A. Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment[J]. Irrigation Science, 2008, 26(3):253-259.
[9] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2):109-120.
[10] 刘昌明, 张 丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5):579-588.[LIU C M, ZHANG D. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5):579-588.]
[11] RODERICK M L, ROTSTAYN L D, FARQUHAR G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17):L17403.
[12] CHATTOPADHYAY N, HULME M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change[J]. Agricultural and Forest Meteorology, 1997, 87(1):55-73.
[13] ABTEW W, OBEYSEKERA J, IRICANIN N. Pan evaporation and potential evapotranspiration trends in South Florida[J]. Hydrological Processes, 2011, 25(6):958-969.
[14] 韩松俊, 刘群昌, 杨书君. 黑河流域上中下游潜在蒸散发变化及其影响因素的差异[J]. 武汉大学学报(工学版), 2009, 42(6):734-737.[HAN S J, LIU Q C, YANG S J. Differences of changes in potential evapotranspiration and its factors over the upper, middle and lower reaches of Heihe River Basin[J]. Engineering Journal of Wuhan University, 2009, 42(6):734-737.]
[15] 陈 超, 庞艳梅, 潘学标, 等. 四川地区参考作物蒸散量的变化特征及气候影响因素分析[J]. 中国农业气象, 2011, 32(1):35-40.[CHEN C, PANG Y M, PAN X B, et al. Analysis on change of reference crop evapotranspiration and climatic influence factors in Sichuan[J]. Chinese Journal of Agrometeorology, 2011, 32(1):35-40.]
[16] 罗孳孳, 阳园燕, 杨世琦, 等. 重庆地区参考作物蒸散时空特征与气候影响因子[J]. 节水灌溉, 2012(10):5-9.[LUO Z Z, YANG Y Y, YANG S Q, et al. Spatial-temporal characteristics of reference crop evapotranspiration and climatic influence factors in Chongqing[J]. Water Saving Irrigation, 2012(10):5-9.]
[17] 谢 平, 张杨珠, 龙怀玉, 等. 近31年来云南省潜在蒸散量的时空演变[J]. 西南农业学报, 2016, 29(4):940-947.[XIE P, ZHANG Y Z, LONG H Y, et al. Temporal-spatial variations of potential evapotranspiration in Yunnan Province during 1981-2011[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(4):940-947.]
[18] 戴明宏, 李玉涛, 王腊春, 等. 典型喀斯特地区参考作物蒸散量的时空变化分析——以贵州省为例[J]. 地球与环境, 2016, 44(3):342-352.[DAI M H, LI Y T, WANG L C, et al. Temporal and spatial variation of reference crop evapotranspiration in Guizhou Province, China[J]. Earth and Environment, 2016, 44(3):342-352.]
[19] ALLEN R G, PRUITT W O, WRIGHT J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management, 2006, 81(1/2):1-22.
[20] ALLEN R G, CLEMMENS A J, BURT C M, et al. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1):24-36.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20481-2006 气象干旱等级[S]. 北京:中国标准出版社, 2006.[General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 20481-2006 Classification of meteorological droughtcategory[S]. Beijing:China Standard Press, 2006.]
[22] 王 蒙, 殷淑燕. 近52a长江中下游地区极端降水的时空变化特征[J]. 长江流域资源与环境, 2015, 24(7):1221-1229.[WANG M, YIN S Y. Spatio-temporal variations of the extreme precipitation of middle and lower reaches of the Yangtze river in recent 52 years[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7):1221-1229.]
[23] XU X Y, YANG D W, YANG H B, et al. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014, 510:530-540.
[24] DAI A G. Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews:Climate Change, 2011, 2(1):45-65.
[25] BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox[J]. Nature, 1998, 396(6706):30.
[26] 高 歌, 陈德亮, 任国玉, 等. 1956~2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3):378-387.[GAO G, CHEN D L, REN G Y, et al. Trend of potential evapotranspiration over China during 1956 to 2000[J]. Geographical Research, 2006, 25(3):378-387.]
[27] 申双和, 盛 琼. 45年来中国蒸发皿蒸发量的变化特征及其成因[J]. 气象学报, 2008, 66(3):452-460.[SHEN S H, SHENG Q. Changes in pan evaporation and its cause in China in the last 45 years[J]. Acta Meteorologica Sinica, 2008, 66(3):452-460.]
[28] 刘 敏, 沈彦俊, 曾 燕, 等. 近50年中国蒸发皿蒸发量变化趋势及原因[J]. 地理学报, 2009, 64(3):259-269.[LIU M, SHEN Y J, ZENG Y, et al. Changing trend of pan evaporation and its cause over the past 50 years in China[J]. Acta Geographica Sinica, 2009, 64(3):259-269.]
[29] 尹文有. 全球变暖背景下西南地区气候变化特征分析[D]. 兰州:兰州大学硕士学位论文, 2010.[YIN W Y. Analysis of climate change characteristics over Southwest China under the background of global warming[D]. Lanzhou:Master Dissertation of Lanzhou University, 2010.]
[30] 周 丹, 张 勃, 李小亚, 等. 1961~2010年中国大陆地面气候要素变化特征分析[J]. 长江流域资源与环境, 2014, 23(4):549-558.[ZHOU D, ZHANG B, LI X Y, et al. Analysis of variations of climatic elements in surface ground of mainland China during 1961-2010[J]. Resources and Environment in the Yangtze Basin, 2014, 23(4):549-558.]
[31] 王 钧, 蒙吉军. 西南喀斯特地区近45年来气候变化特征及趋势[J]. 北京大学学报(自然科学版), 2007, 43(2):223-229.[WANG J, MENG J J. Characteristics and tendencies of climate change in the Southwestern Karst Region of China in the recent 45 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2):223-229.]
[32] YUE S, WANG C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6):4-1-4-7.
[33] 黄 英, 王 宇. 云南省蒸发量时空分布及年际变化分析[J]. 水文, 2003, 23(1):36-40.[HUANG Y, WANG Y. Analysis on temporal and spatial distribution and inter-annual change of the evaporation capacity in Yunnan Province[J]. Hydrology, 2003, 23(1):36-40.]
[34] 李 楠, 张 宏. 定量分析四川省1954~2014年参考作物蒸散量变化特征及气候影响因素[J]. 贵州师范大学学报(自然科学版), 2015, 33(4):32-36.[LI N, ZHANG H. Analyze the characteristics of reference crop evapotranspiration and climate factors in Sichuan during 1954~2014[J]. Journal of Guizhou Normal University (Natural Sciences), 2015, 33(4):32-36.]
[35] 徐蒙蒙, 张志才, 陈 喜. 贵州省参考作物蒸散发量的时空变化分析[J]. 地球与环境, 2012, 40(2):243-249.[XU M M, ZHANG Z C, CHEN X. Spatio-temporal variation of reference evapotranspiration in Guizhou Province from 1960 to 2009[J]. Earth and Environment, 2012, 40(2):243-249.]
[36] 徐 羽, 徐 刚, 吴艳飞, 等. 重庆市参考作物蒸散量及湿润指数变化研究[J]. 水土保持研究, 2015, 22(3):176-181, 187.[XU Y, XU G, WU Y F, et al. Reference crop evapotranspiration and surface humidity index in Chongqing city[J]. Research of Soil and Water Conservation, 2015, 22(3):176-181, 187.]
[37] THOMAS A. Seasonal and spatial variation of evapotranspiration in the mountains of southwest China[J]. Journal of Mountain Science, 2002, 20(4):385-393.
[38] 董晴晴, 占车生, 王会肖, 等. 2000年以来的渭河流域实际蒸散发时空格局分析[J]. 干旱区地理, 2016, 39(2):327-335.[DONG Q Q, ZHAN C S, WANG H X, et al. Spatio-temporal patterns of actual evapotranspiration in the Weihe River Basin since 2000[J]. Arid Land Geography, 2016, 39(2):327-335.]
[39] 唐 婷, 冉圣宏, 谈明洪. 京津唐地区城市扩张对地表蒸散发的影响[J]. 地球信息科学学报, 2013, 15(2):233-240.[TANG T, RAN S H, TAN M H. Urbanization and its impact on the evapotranspiration in Beijing-Tianjin-Tangshan Area[J]. Journal of Geo-Information Science, 2013, 15(2):233-240.]
[40] 王炳亮, 李国胜. 1961~2010年辽河三角洲参考蒸散发变化特征及主导因子分析[J]. 地理科学, 2014, 34(10):1233-1238.[WANG B L, LI G S. Quantification of the reasons for reference evapotranspiration changes over the Liaohe Delta, Northeast China[J]. Scientia Geographica Sinica, 2014, 34(10):1233-1238.]
[41] GRIFFITHS G M, CHAMBERS L E, HAYLOCK M R, et al. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region[J]. International Journal of Climatology, 2005, 25(10):1301-1330.
[42] 温姗姗, 姜 彤, 李修仓, 等. 1961-2010年松花江流域实际蒸散发时空变化及影响要素分析[J]. 气候变化研究进展, 2014, 10(2):79-86.[WEN S S, JIANG T, LI X C, et al. Changes of actual evapotranspiration over the Songhua River Basin from 1961 to 2010[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(2):79-86.]
[43] 谢今范, 韦小丽, 张晨琛, 等. 第二松花江流域实际蒸散发的时空变化特征和影响因素[J]. 生态学杂志, 2013, 32(12):3336-3343.[XIE J F, WEI X L, ZHANG C C, et al. Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River basin, Northeast China[J]. Chinese Journal of Ecology, 2013, 32(12):3336-3343.]
[44] 蒋 冲, 王 飞, 穆兴民, 等. 秦岭南北潜在蒸散量时空变化及突变特征分析[J]. 长江流域资源与环境, 2013, 22(5):573-581.[JIANG C, WANG F, MU X M, et al. Spatial-temporal variations and mutations of potential evapotranspiration in the Northern and Southern regions of the Qinling mountains[J]. Resources and Environment in the Yangtze Basin, 2013, 22(5):573-581.]
[45] 吴增祥. 气象台站历史沿革信息及其对观测资料序列均一性影响的初步分析[J]. 应用气象学报, 2005, 16(4):461-467.[WU Z X. Preliminary analyses of the information on meteorological station historical evolution and its impacts on homogeneity of observational records[J]. Journal of Applied Meteorological Science, 2005, 16(4):461-467.]
[1] 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460.
[2] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[3] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[4] 毛天旭, 王根绪. 基于逐月退水系数的三江源枯季径流特征分析[J]. 长江流域资源与环境, 2016, 25(07): 1150-1157.
[5] 袁文德, 郑江坤. 1962~2012年西南地区极端温度事件时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1246-1254.
[6] 张勃, 王东, 王桂钢, 马琼, 张国斌, 季定民. 西南地区近14 a植被覆盖变化及其与气候因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 956-964.
[7] 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-.
[8] 吴楠, 高吉喜, 苏德毕力格, 罗遵兰, 李岱青. 长江上游植被净初级生产力年际变化规律及其对气候的响应[J]. 长江流域资源与环境, 2010, 19(04): 389-.
[9] 王怀清, 赵冠男, 彭静, 胡菊芳. 近50年鄱阳湖五大流域降水变化特征研究[J]. 长江流域资源与环境, 2009, 18(7): 615-.
[10] 叶殿秀 张 强 邹旭恺 陈鲜艳. 近几十年三峡库区主要气象灾害变化趋势[J]. 长江流域资源与环境, 2009, 18(3): 296-300.
[11] 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-.
[12] 夏既胜,杨树华,张林艳,王玉朝,赵筱青,谭志卫. 金沙江流域(云南部分)生态潜力及其变化[J]. 长江流域资源与环境, 2008, 17(5): 798-798.
[13] 吴宜进. 近50年长江流域降水日数的演变趋势[J]. 长江流域资源与环境, 2008, 17(2): 217-217.
[14] 杨 军,刘俊卿,强德厚. 探索性数据分析在西藏气候变化趋势研究中的应用[J]. 长江流域资源与环境, 2007, 16(4): 543-543.
[15] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[3] 简敏菲,弓晓峰,游 海,黄志中,朱 捷. 鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004, 13(6): 589 -593 .
[4] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201 -206 .
[5] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[6] 丰志勇,曾 刚. 上海市工业园区投资环境评价研究[J]. 长江流域资源与环境, 2006, 15(3): 274 -280 .
[7] 宋新山, 汪永辉, 秦 艳, 刘振鸿, 吴应玲. 上海新城区构建湿地处理污水的经济技术分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 88 -91 .
[8] 陈曦. 宋至清荆江南岸分流四口的演变[J]. 长江流域资源与环境, 2009, 18(3): 270 -274 .
[9] 陈永柏, 邓 云| 梁瑞峰. 溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J]. 长江流域资源与环境, 2010, 19(03): 340 .
[10] 田忠志, 邢友华, 姜瑞雪, 高雁. 东平湖表层沉积物中磷的形态分布特征研究[J]. 长江流域资源与环境, 2010, 19(06): 724 .